Noether symmetry analysis for the generalized brans-dicke cosmology

被引:1
作者
Paliathanasis, Andronikos [1 ,2 ,3 ,4 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, ZA-4000 Durban, South Africa
[2] North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa
[3] Univ Catolica Norte, Dept Matemat, Avda Angamos 0610,Casilla 1280, Antofagasta, Chile
[4] Woxsen Univ, Sch Sci, Hyderabad 502345, Telangana, India
关键词
cosmology; noether symmetries; integrability; brans-dicke theory; SCALAR; CONSTRAINTS; EQUATIONS;
D O I
10.1088/1402-4896/ada213
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the complete solution to the classification problem regarding the variational symmetries of the generalized Brans-Dicke cosmological model in the presence of a second scalar field minimally coupled to gravity and the generalized Brans-Dicke scalar field theory. Through the symmetry analysis, we were able to specify the functional form of the field equations such that they become integrable. Additionally, new families of integrable cosmological models are presented.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies [J].
Abdalla, Elcio ;
Abellan, Guillermo Franco ;
Aboubrahim, Amin ;
Agnello, Adriano ;
Akarsu, Ozgur ;
Akrami, Yashar ;
Alestas, George ;
Aloni, Daniel ;
Amendola, Luca ;
Anchordoqui, Luis A. ;
Anderson, Richard I. ;
Arendse, Nikki ;
Asgari, Marika ;
Ballardini, Mario ;
Bargerx, Vernon ;
Basilakos, Spyros ;
Batista, Ronaldo C. ;
Battistelli, Elia S. ;
Battye, Richard ;
Benetti, Micol ;
Benisty, David ;
Berlin, Asher ;
de Bernardis, Paolo ;
Berti, Emanuele ;
Bidenko, Bohdan ;
Birrer, Simon ;
Blakeslee, John P. ;
Boddy, Kimberly K. ;
Bom, Clecio R. ;
Bonilla, Alexander ;
Borghi, Nicola ;
Bouchet, Francois R. ;
Braglia, Matteo ;
Buchert, Thomas ;
Buckley-Geer, Elizabeth ;
Calabrese, Erminia ;
Caldwell, Robert R. ;
Camarena, David ;
Capozziello, Salvatore ;
Casertano, Stefano ;
Chen, Angela ;
Chen, Geoff C-F ;
Chen, Hsin-Yu ;
Chluba, Jens ;
Chudaykin, Anton ;
Cicoli, Michele ;
Copi, Craig J. ;
Courbin, Fred ;
Cyr-Racine, Francis-Yan ;
Czerny, Bozena .
JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2022, 34 :49-211
[2]   Quintessential cosmological tensions [J].
Adil, Arsalan ;
Albrecht, Andreas ;
Knox, Lloyd .
PHYSICAL REVIEW D, 2023, 107 (06)
[3]   H0 tension, phantom dark energy, and cosmological parameter degeneracies [J].
Alestas, G. ;
Kazantzidis, L. ;
Perivolaropoulos, L. .
PHYSICAL REVIEW D, 2020, 101 (12)
[4]   Constraining an exact Brans-Dicke gravity theory with recent observations [J].
Amirhashchi, Hassan ;
Yadav, Anil Kumar .
PHYSICS OF THE DARK UNIVERSE, 2020, 30
[5]  
[Anonymous], 1918, Mathematisch-Physikalische Klasse, DOI DOI 10.1080/00411457108231446
[6]   Exact scalar-tensor cosmological models [J].
Belinchon, J. A. ;
Harko, T. ;
Mak, M. K. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (07)
[7]  
Bluman GW., 1989, Symmetries and differential equations, Vvol. 81
[8]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[9]   EXACT COSMOLOGICAL SOLUTIONS IN BRANS AND DICKES SCALAR-TENSOR THEORY .1. [J].
DEHNEN, H ;
OBREGON, O .
ASTROPHYSICS AND SPACE SCIENCE, 1971, 14 (02) :454-&
[10]   General analytic solutions of scalar field cosmology with arbitrary potential [J].
Dimakis, N. ;
Karagiorgos, A. ;
Zampeli, Adamantia ;
Paliathanasis, Andronikos ;
Christodoulakis, T. ;
Terzis, Petros A. .
PHYSICAL REVIEW D, 2016, 93 (12)