Surface Gate-Defined Quantum Dots in MoS2 with Bi Contacts

被引:0
作者
Tataka, Riku [1 ,2 ]
Sharma, Alka [3 ]
Shinozaki, Motoya [3 ]
Johmen, Tomoya [1 ,2 ]
Kumasaka, Takeshi [1 ]
Chen, Yong P. [3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Otsuka, Tomohiro [1 ,2 ,3 ,10 ,11 ]
机构
[1] Tohoku Univ, Res Inst Elect Commun, Sendai 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Sendai 9808579, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai 9808577, Japan
[4] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[5] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[7] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[8] Aarhus Univ, Villum Ctr Hybrid Quantum Mat & Devices, DK-8000 Aarhus C, Denmark
[9] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[10] Tohoku Univ, Ctr Sci & Innovat Spintron, Sendai 9808577, Japan
[11] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
关键词
MONOLAYER MOS2; SPIN; TRANSISTORS;
D O I
10.7566/JPSJ.93.094601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transition-metal dichalcogenides (TMDCs) are promising materials for nano and quantum devices, with performance dependent on electrical contacts and gate electrodes at cryogenic temperatures. In this study, we utilized semimetal bismuth as the contact metal to fabricate two types of devices based on MoS2-Bi: field-effect transistors (FETs) and quantum dot devices. We observed linear current-voltage characteristics in the FET devices at temperatures of 4.2 and 0.4 K, within the range of -0.03 to 0.03 V, essential for quantum devices. For the MoS2 quantum dot device, we utilized intrinsic Schottky barriers between MoS2 and gold as gate electrodes to form and control the quantum dots. Coulomb diamonds were observed in the MoS2 devices at temperature of 0.4 K, with extracted parameters matching our device design. Our simplified fabrication process eliminates the need for additional fabricate gate insulators steps, enhancing design flexibility and fabrication possibilities for advanced quantum devices, including vertically integrated systems.
引用
收藏
页数:5
相关论文
共 53 条
[1]  
Andrews K., 2020, ACS Nano, V14, P6232
[2]   Spin relaxation in a single-electron graphene quantum dot [J].
Banszerus, L. ;
Hecker, K. ;
Moeller, S. ;
Icking, E. ;
Watanabe, K. ;
Taniguchi, T. ;
Volk, C. ;
Stampfer, C. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[3]   Spin-valley coupling in single-electron bilayer graphene quantum dots [J].
Banszerus, L. ;
Moeller, S. ;
Steiner, C. ;
Icking, E. ;
Trellenkamp, S. ;
Lentz, F. ;
Watanabe, K. ;
Taniguchi, T. ;
Volk, C. ;
Stampfer, C. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]  
Baugher B. W., 2013, Nano Lett., V13, P4212
[5]   Measurement Back-Action in Stacked Graphene Quantum Dots [J].
Bischoff, D. ;
Eich, M. ;
Zilberberg, O. ;
Roessler, C. ;
Ihn, T. ;
Ensslin, K. .
NANO LETTERS, 2015, 15 (09) :6003-6008
[6]   Sb2Te3/MoS2 Van der Waals Junctions with High Thermal Stability and Low Contact Resistance [J].
Chang, Wen Hsin ;
Hatayama, Shogo ;
Saito, Yuta ;
Okada, Naoya ;
Endo, Takahiko ;
Miyata, Yasumitsu ;
Irisawa, Toshifumi .
ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04)
[7]  
Cui X., 2017, Nano Lett., V17, P4781
[8]  
Das S., 2013, Nano Lett., V13, P100
[9]  
Das S., 2013, Nano Lett, V13, P3396
[10]  
Davari S., 2020, Phys. Rev. Appl., V13