Self-adaptive differential evolution-based coati optimization algorithm for multi-robot path planning

被引:0
作者
Zhu, Lun [1 ]
Zhou, Guo [2 ]
Zhou, Yongquan [1 ,3 ]
Luo, Qifang [1 ,3 ]
Huang, Huajuan [1 ,3 ]
Wei, Xiuxi [1 ,3 ]
机构
[1] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning, Peoples R China
[2] China Univ Polit Sci & Law, Dept Sci & Technol Teaching, Beijing, Peoples R China
[3] Guangxi Key Labs Hybrid Computat & IC Design Anal, Nanning, Peoples R China
基金
中国国家自然科学基金;
关键词
differential evolution; coati optimization algorithm; self-adaptive differential evolution-based coati optimization; multi-robot path planning; metaheuristic;
D O I
10.1017/S0263574725000049
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The multi-robot path planning problem is an NP-hard problem. The coati optimization algorithm (COA) is a novel metaheuristic algorithm and has been successfully applied in many fields. To solve multi-robot path planning optimization problems, we embed two differential evolution (DE) strategies into COA, a self-adaptive differential evolution-based coati optimization algorithm (SDECOA) is proposed. Among these strategies, the proposed algorithm adaptively selects more suitable strategies for different problems, effectively balancing global and local search capabilities. To validate the algorithm's effectiveness, we tested it on CEC2020 benchmark functions and 48 CEC2020 real-world constrained optimization problems. In the latter's experiments, the algorithm proposed in this paper achieved the best overall results compared to the top five algorithms that won in the CEC2020 competition. Finally, we applied SDECOA to optimization multi-robot online path planning problem. Facing extreme environments with multiple static and dynamic obstacles of varying sizes, the SDECOA algorithm consistently outperformed some classical and state-of-the-art algorithms. Compared to DE and COA, the proposed algorithm achieved an average improvement of 46% and 50%, respectively. Through extensive experimental testing, it was confirmed that our proposed algorithm is highly competitive. The source code of the algorithm is accessible at: https://ww2.mathworks.cn/matlabcentral/fileexchange/164876-HDECOA.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    J. K. Chong
    Memetic Computing, 2016, 8 : 147 - 165
  • [32] A Cluster-Based Differential Evolution With Self-Adaptive Strategy for Multimodal Optimization
    Gao, Weifeng
    Yen, Gary G.
    Liu, Sanyang
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1314 - 1327
  • [33] Multi-robot path planning using learning-based Artificial Bee Colony algorithm
    Cui, Yibing
    Hu, Wei
    Rahmani, Ahmed
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [34] Self-Adaptive Multi-objective Differential Evolutionary Algorithm based on Decomposition
    Chen, Lingyu
    Wang, Beizhan
    Liu, Weigiang
    Wang, Jiajun
    2016 11TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE), 2016, : 610 - 616
  • [35] Self-adaptive Differential Evolution Algorithm with the New Mutation Strategies
    Li, Huirong
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 141 - +
  • [36] A Self-Adaptive Differential Evolution Algorithm with Dimension Perturb Strategy
    Lee, Wei-Ping
    Chiang, Chang-Yu
    JOURNAL OF COMPUTERS, 2011, 6 (03) : 524 - 531
  • [37] APDDE: self-adaptive parameter dynamics differential evolution algorithm
    Hong-bo Wang
    Xue-na Ren
    Guo-qing Li
    Xu-yan Tu
    Soft Computing, 2018, 22 : 1313 - 1333
  • [38] Self-adaptive differential evolution algorithm with improved mutation strategy
    Wang, Shihao
    Li, Yuzhen
    Yang, Hongyu
    Liu, Hong
    SOFT COMPUTING, 2018, 22 (10) : 3433 - 3447
  • [39] A hybrid self-adaptive invasive weed algorithm with differential evolution
    Zhao, Fuqing
    Du, Songlin
    Lu, Hao
    Ma, Weimin
    Song, Houbin
    CONNECTION SCIENCE, 2021, 33 (04) : 929 - 953
  • [40] An improved self-adaptive differential evolution algorithm and its application
    Deng, Wu
    Yang, Xinhua
    Zou, Li
    Wang, Meng
    Liu, Yaqing
    Li, Yuanyuan
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 128 : 66 - 76