Self-adaptive differential evolution-based coati optimization algorithm for multi-robot path planning

被引:0
|
作者
Zhu, Lun [1 ]
Zhou, Guo [2 ]
Zhou, Yongquan [1 ,3 ]
Luo, Qifang [1 ,3 ]
Huang, Huajuan [1 ,3 ]
Wei, Xiuxi [1 ,3 ]
机构
[1] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning, Peoples R China
[2] China Univ Polit Sci & Law, Dept Sci & Technol Teaching, Beijing, Peoples R China
[3] Guangxi Key Labs Hybrid Computat & IC Design Anal, Nanning, Peoples R China
基金
中国国家自然科学基金;
关键词
differential evolution; coati optimization algorithm; self-adaptive differential evolution-based coati optimization; multi-robot path planning; metaheuristic;
D O I
10.1017/S0263574725000049
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The multi-robot path planning problem is an NP-hard problem. The coati optimization algorithm (COA) is a novel metaheuristic algorithm and has been successfully applied in many fields. To solve multi-robot path planning optimization problems, we embed two differential evolution (DE) strategies into COA, a self-adaptive differential evolution-based coati optimization algorithm (SDECOA) is proposed. Among these strategies, the proposed algorithm adaptively selects more suitable strategies for different problems, effectively balancing global and local search capabilities. To validate the algorithm's effectiveness, we tested it on CEC2020 benchmark functions and 48 CEC2020 real-world constrained optimization problems. In the latter's experiments, the algorithm proposed in this paper achieved the best overall results compared to the top five algorithms that won in the CEC2020 competition. Finally, we applied SDECOA to optimization multi-robot online path planning problem. Facing extreme environments with multiple static and dynamic obstacles of varying sizes, the SDECOA algorithm consistently outperformed some classical and state-of-the-art algorithms. Compared to DE and COA, the proposed algorithm achieved an average improvement of 46% and 50%, respectively. Through extensive experimental testing, it was confirmed that our proposed algorithm is highly competitive. The source code of the algorithm is accessible at: https://ww2.mathworks.cn/matlabcentral/fileexchange/164876-HDECOA.
引用
收藏
页数:38
相关论文
共 50 条
  • [11] Structure-Control Design of a Parallel Robot Based on Multi-Objective Self-Adaptive Differential Evolution Algorithm
    Mei, Meng Qing
    Ping, Sheng Hui
    Bin, Zhong Ruo
    Yue, Pan Shi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC & MECHANICAL ENGINEERING AND INFORMATION TECHNOLOGY (EMEIT-2012), 2012, 23
  • [12] An Opposition-based Self-adaptive Hybridized Differential Evolution Algorithm for Multi-objective Optimization (OSADE)
    Chong, Jin Kiat
    Tan, Kay Chen
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 447 - 461
  • [13] Self-adaptive differential evolution algorithm based on exponential smoothing
    Zhao Z.-W.
    Yang J.-M.
    Hu Z.-Y.
    Che H.-J.
    Zhao, Zhi-Wei (wzzwzz@sina.com), 1600, Northeast University (31): : 790 - 796
  • [14] HTN-based multi-robot path planning
    Zeng, Suying
    Zhu, Yuancheng
    Qi, Chao
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 4719 - 4723
  • [15] An Improved Particle Swarm Optimization for Multi-Robot Path Planning
    Das, P. K.
    Sahoo, B. M.
    Behera, H. S.
    Vashisht, S.
    2016 1ST INTERNATIONAL CONFERENCE ON INNOVATION AND CHALLENGES IN CYBER SECURITY (ICICCS 2016), 2016, : 97 - 106
  • [16] A hybrid algorithm based on self-adaptive gravitational search algorithm and differential evolution
    Zhao, Fuqing
    Xue, Feilong
    Zhang, Yi
    Ma, Weimin
    Zhang, Chuck
    Song, Houbin
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 113 : 515 - 530
  • [17] Path planning and engineering problems of 3D UAV based on adaptive coati optimization algorithm
    Jia, Chuan
    He, Ling
    Liu, Dan
    Fu, Shengwei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [18] Self-Adaptive Differential Evolution Algorithm Applied to Water Distribution System Optimization
    Zheng, Feifei
    Zecchin, Aaron C.
    Simpson, Angus R.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2013, 27 (02) : 148 - 158
  • [19] A self-adaptive combined strategies algorithm for constrained optimization using differential evolution
    Elsayed, Saber M.
    Sarker, Ruhul A.
    Essam, Daryl L.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 : 267 - 282
  • [20] A Self-Adaptive Improved Slime Mold Algorithm for Multi-UAV Path Planning
    Ma, Yuelin
    Zhang, Zeren
    Yao, Meng
    Fan, Guoliang
    DRONES, 2025, 9 (03)