Terahertz conductivity of two-dimensional materials: a review

被引:0
作者
Mitra, Shuva [1 ]
Avazpour, Laleh [1 ]
Knezevic, Irena [1 ]
机构
[1] Univ Wisconsin Madison, Dept Elect & Comp Engn, 1415 Engn Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
terahertz; 2D materials; TMD; graphene; THz-TDS; electronic transport; OPTP; TIME-DOMAIN SPECTROSCOPY; TRANSITION-METAL DICHALCOGENIDES; CHEMICAL-VAPOR-DEPOSITION; LIQUID-PHASE EXFOLIATION; FIELD-EFFECT TRANSISTORS; LAYER MOS2; THIN-FILMS; GRAPHENE NANORIBBONS; TRANSPORT-PROPERTIES; TUNGSTEN DISULFIDE;
D O I
10.1088/1361-648X/adab6a
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range. In this paper, we overview the synthesis of 2D materials and the prominent THz spectroscopy techniques: THz time-domain spectroscopy, optical-pump THz-probe technique, and optical pump-probe THz spectroscopy. Through a confluence of experimental findings, numerical simulation, and theoretical analysis, we present the current understanding of the rich ultrafast physics of technologically significant 2D materials: graphene, transition metal dichalcogenides, MXenes, perovskites, topological 2D materials, and 2D heterostructures. Finally, we offer a perspective on the role of THz characterization in guiding future research and in the quest for ideal 2D materials for new applications.
引用
收藏
页数:27
相关论文
共 258 条
[1]   Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets [J].
Abedinpour, Saeed H. ;
Vignale, G. ;
Principi, A. ;
Polini, Marco ;
Tse, Wang-Kong ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2011, 84 (04)
[2]   Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3 [J].
Aguilar, R. Valdes ;
Qi, J. ;
Brahlek, M. ;
Bansal, N. ;
Azad, A. ;
Bowlan, J. ;
Oh, S. ;
Taylor, A. J. ;
Prasankumar, R. P. ;
Yarotski, D. A. .
APPLIED PHYSICS LETTERS, 2015, 106 (01)
[3]   AI-Powered Terahertz VLSI Testing Technology for Ensuring Hardware Security and Reliability [J].
Akter, Naznin ;
Siddiquee, Masudur R. ;
Shur, Michael ;
Pala, Nezih .
IEEE ACCESS, 2021, 9 (09) :64499-64509
[4]   Terahertz band: Next frontier for wireless communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
PHYSICAL COMMUNICATION, 2014, 12 :16-32
[5]   Exfoliation of MoS2 Quantum Dots: Recent Progress and Challenges [J].
Ali, Luqman ;
Subhan, Fazle ;
Ayaz, Muhammad ;
ul Hassan, Syed Shams ;
Byeon, Clare Chisu ;
Kim, Jong Su ;
Bungau, Simona .
NANOMATERIALS, 2022, 12 (19)
[6]  
[Anonymous], 2000, Fundamentals of Carrier Transport, DOI [10.1017/CBO9780511618611, DOI 10.1017/CBO9780511618611]
[7]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[8]   Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface [J].
Bansal, Namrata ;
Kim, Yong Seung ;
Edrey, Eliav ;
Brahlek, Matthew ;
Horibe, Yoichi ;
IidaD, Keiko ;
Tanimura, Makoto ;
Li, Guo-Hong ;
Feng, Tian ;
Lee, Hang-Dong ;
Gustafsson, Torgny ;
Andrei, Eva Y. ;
Oh, Seongshik .
THIN SOLID FILMS, 2011, 520 (01) :224-229
[9]   Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review [J].
Bawuah, Prince ;
Zeitler, J. Axel .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 139
[10]   Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy [J].
Baxter, Jason B. ;
Schmuttenmaer, Charles A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25229-25239