Image quality assessment and automation in late gadolinium-enhanced MRI of the left atrium in atrial fibrillation patients

被引:0
|
作者
Orkild, Benjamin [1 ,2 ,3 ]
Sultan, K. M. Arefeen [3 ,4 ]
Kholmovski, Eugene [5 ,6 ]
Kwan, Eugene [1 ,2 ]
Bieging, Erik [5 ,7 ]
Morris, Alan [3 ]
Stoddard, Greg [7 ]
Macleod, Rob S. [1 ,2 ,3 ]
Elhabian, Shireen [3 ,4 ]
Ranjan, Ravi [1 ,2 ,7 ]
Dibella, Ed [1 ,5 ]
机构
[1] Univ Utah, Dept Biomed Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Nora Eccles Harrison Cardiovasc Res & Training Ins, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Univ Utah, Sch Comp, Salt Lake City, UT USA
[5] Univ Utah, Dept Radiol & Imaging Sci, Salt Lake City, UT USA
[6] Johns Hopkins, Dept Biomed Engn, Baltimore, MD USA
[7] Univ Utah, Div Cardiol, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
LGE-MRI; Image quality; Deep learning; Atrial fibrillation; CATHETER ABLATION; FIBROSIS; NOISE;
D O I
10.1007/s10840-024-01971-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundLate gadolinium-enhanced (LGE) MRI has become a widely used technique to non-invasively image the left atrium prior to catheter ablation. However, LGE-MRI images are prone to variable image quality, with quality metrics that do not necessarily correlate to the image's diagnostic quality. In this study, we aimed to define consistent clinically relevant metrics for image and diagnostic quality in 3D LGE-MRI images of the left atrium, have multiple observers assess LGE-MRI image quality to identify key features that measure quality and intra/inter-observer variabilities, and train and test a CNN to assess image quality automatically.MethodsWe identified four image quality categories that impact fibrosis assessment in LGE-MRI images and trained individuals to score 50 consecutive pre-ablation atrial fibrillation LGE-MRI scans from the University of Utah hospital image database. The trained individuals then scored 146 additional scans, which were used to train a convolutional neural network (CNN) to assess diagnostic quality.ResultsThere was excellent agreement among trained observers when scoring LGE-MRI scans, with inter-rater reliability scores ranging from 0.65 to 0.76 for each category. When the quality scores were converted to a binary diagnostic/non-diagnostic, the CNN achieved a sensitivity of 0.80 +/- 0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.80 \pm 0.06$$\end{document} and a specificity of 0.56 +/- 0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.56 \pm 0.10$$\end{document}.ConclusionThe use of a training document with reference examples helped raters achieve excellent agreement in their quality scores. The CNN gave a reasonably accurate classification of diagnostic or non-diagnostic 3D LGE-MRI images of the left atrium, despite the use of a relatively small training set.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Compressed sensing for rapid late gadolinium enhanced imaging of the left atrium: A preliminary study
    Iyer, Srikant Kamesh
    Tasdizen, Tolga
    Burgon, Nathan
    Kholmovski, Eugene
    Marrouche, Nassir
    Adluru, Ganesh
    DiBella, Edward
    MAGNETIC RESONANCE IMAGING, 2016, 34 (07) : 846 - 854
  • [32] Association of Left Atrial Local Conduction Velocity With Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients With Atrial Fibrillation
    Fukumoto, Kotaro
    Habibi, Mohammadali
    Ipek, Esra Gucuk
    Zahid, Sohail
    Khurram, Irfan M.
    Zimmerman, Stefan L.
    Zipunnikov, Vadim
    Spragg, David
    Ashikaga, Hiroshi
    Trayanova, Natalia
    Tomaselli, Gordon F.
    Rickard, John
    Marine, Joseph E.
    Berger, Ronald D.
    Calkins, Hugh
    Nazarian, Saman
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2016, 9 (03)
  • [33] Meta-Analysis of the Association Between Left-Ventricular Late Gadolinium Enhancement on Cardiac MRI and Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy
    Song, Jiantao
    Chen, Peng
    Pan, Xiangyue
    Chen, Bo
    Zang, Jianhui
    Zhang, Junjie
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2025, 42 (04):
  • [34] Effect of contrast dosage on image quality of MR angiography and Late Gadolinium enhancement imaging of the left atrium
    Sathya Vijayakumar
    Eugene G Kholmovski
    Chris J McGann
    Daniel Sommers
    Edward VR DiBella
    Nassir F Marrouche
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [35] The Effect of Fat Pad Modification during Ablation of Atrial Fibrillation: Late Gadolinium Enhancement MRI Analysis
    Higuchi, Koji
    Akkaya, Mehmet
    Koopmann, Matthias
    Blauer, Joshua J. E.
    Burgon, Nathan S.
    Damal, Kavitha
    Ranjan, Ravi
    Kholmovski, Eugene
    Macleod, Rob S.
    Marrouche, Nassir F.
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2013, 36 (04): : 467 - 476
  • [36] The Spatial Distribution of Late Gadolinium Enhancement of Left Atrial Magnetic Resonance Imaging in Patients With Atrial Fibrillation
    Higuchi, Koji
    Cates, Joshua
    Gardner, Gregory
    Morris, Alan
    Burgon, Nathan S.
    Akoum, Nazem
    Marrouche, Nassir F.
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2018, 4 (01) : 49 - 58
  • [37] Clinical predictors of cardiac magnetic resonance late gadolinium enhancement in patients with atrial fibrillation
    Chrispin, Jonathan
    Ipek, Esra Gucuk
    Habibi, Mohammadali
    Yang, Eunice
    Spragg, David
    Marine, Joseph E.
    Ashikaga, Hiroshi
    Rickard, John
    Berger, Ronald D.
    Zimmerman, Stefan L.
    Calkins, Hugh
    Nazarian, Saman
    EUROPACE, 2017, 19 (03): : 371 - 377
  • [38] Association of Left Atrial High-Resolution Late Gadolinium Enhancement on Cardiac Magnetic Resonance With Electrogram Abnormalities Beyond Voltage in Patients With Atrial Fibrillation
    Kuo, Ling
    Zado, Erica
    Frankel, David
    Santangelli, Pasquale
    Arkles, Jeffrey
    Han, Yuchi
    Marchlinski, Francis E.
    Nazarian, Saman
    Desjardins, Benoit
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (02) : E007586
  • [39] Ventricular late gadolinium enhancement by cardiac MRI as a predictor of atrial fibrillation in hypertrophic cardiomyopathy
    Hollowell, Matthew
    Banno, Joseph
    Marsy, Dana
    Shrestha, Nabin
    Tan, Jose
    Mcnamara, Richard
    Decker, Jeffrey
    Albano, Alfred
    Franey, Laura
    Abdallah, Wissam
    Loyaga-Rendon, Renzo
    Chalfoun, Nagib
    Fermin, David
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 411
  • [40] Accelerated 3D Left Atrial Late Gadolinium Enhancement in Patients with Atrial Fibrillation at 1.5 T: Technical Development
    Gunasekaran, Suvai
    Haji-Valizadeh, Hassan
    Lee, Daniel C.
    Avery, Ryan J.
    Wilson, Brent D.
    Ibrahim, Mark
    Markl, Michael
    Passman, Rod S.
    Kholmovski, Eugene G.
    Kim, Daniel
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (05):