Image quality assessment and automation in late gadolinium-enhanced MRI of the left atrium in atrial fibrillation patients

被引:0
|
作者
Orkild, Benjamin [1 ,2 ,3 ]
Sultan, K. M. Arefeen [3 ,4 ]
Kholmovski, Eugene [5 ,6 ]
Kwan, Eugene [1 ,2 ]
Bieging, Erik [5 ,7 ]
Morris, Alan [3 ]
Stoddard, Greg [7 ]
Macleod, Rob S. [1 ,2 ,3 ]
Elhabian, Shireen [3 ,4 ]
Ranjan, Ravi [1 ,2 ,7 ]
Dibella, Ed [1 ,5 ]
机构
[1] Univ Utah, Dept Biomed Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Nora Eccles Harrison Cardiovasc Res & Training Ins, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Univ Utah, Sch Comp, Salt Lake City, UT USA
[5] Univ Utah, Dept Radiol & Imaging Sci, Salt Lake City, UT USA
[6] Johns Hopkins, Dept Biomed Engn, Baltimore, MD USA
[7] Univ Utah, Div Cardiol, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
LGE-MRI; Image quality; Deep learning; Atrial fibrillation; CATHETER ABLATION; FIBROSIS; NOISE;
D O I
10.1007/s10840-024-01971-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundLate gadolinium-enhanced (LGE) MRI has become a widely used technique to non-invasively image the left atrium prior to catheter ablation. However, LGE-MRI images are prone to variable image quality, with quality metrics that do not necessarily correlate to the image's diagnostic quality. In this study, we aimed to define consistent clinically relevant metrics for image and diagnostic quality in 3D LGE-MRI images of the left atrium, have multiple observers assess LGE-MRI image quality to identify key features that measure quality and intra/inter-observer variabilities, and train and test a CNN to assess image quality automatically.MethodsWe identified four image quality categories that impact fibrosis assessment in LGE-MRI images and trained individuals to score 50 consecutive pre-ablation atrial fibrillation LGE-MRI scans from the University of Utah hospital image database. The trained individuals then scored 146 additional scans, which were used to train a convolutional neural network (CNN) to assess diagnostic quality.ResultsThere was excellent agreement among trained observers when scoring LGE-MRI scans, with inter-rater reliability scores ranging from 0.65 to 0.76 for each category. When the quality scores were converted to a binary diagnostic/non-diagnostic, the CNN achieved a sensitivity of 0.80 +/- 0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.80 \pm 0.06$$\end{document} and a specificity of 0.56 +/- 0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.56 \pm 0.10$$\end{document}.ConclusionThe use of a training document with reference examples helped raters achieve excellent agreement in their quality scores. The CNN gave a reasonably accurate classification of diagnostic or non-diagnostic 3D LGE-MRI images of the left atrium, despite the use of a relatively small training set.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Late-gadolinium enhancement properties associated with atrial fibrillation rotors in patients with persistent atrial fibrillation
    Nakamura, Toshihiro
    Kiuchi, Kunihiko
    Fukuzawa, Koji
    Takami, Mitsuru
    Watanabe, Yoshiaki
    Izawa, Yu
    Suehiro, Hideya
    Akita, Tomomi
    Takemoto, Makoto
    Sakai, Jun
    Yatomi, Atsusuke
    Sonoda, Yusuke
    Takahara, Hiroyuki
    Nakasone, Kazutaka
    Yamamoto, Kyoko
    Negi, Noriyuki
    Kono, Atsushi
    Ashihara, Takashi
    Hirata, Ken-ichi
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2021, 32 (04) : 1005 - 1013
  • [22] A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images
    Bai, Jieyun
    Qiu, Ruiyu
    Chen, Jianyu
    Wang, Liyuan
    Li, Lulu
    Tian, Yanfeng
    Wang, Huijin
    Lu, Yaosheng
    Zhao, Jichao
    CARDIOVASCULAR INNOVATIONS AND APPLICATIONS, 2023, 8 (01)
  • [23] Dependence of image quality of late gadolinium enhancement MRI of left atrium on number of patients imaged: results of multi-center trial DECAAF
    Sathya Vijayakumar
    Eugene G Kholmovski
    Mark M Haslam
    Nathan Burgon
    Nassir F Marrouche
    Journal of Cardiovascular Magnetic Resonance, 16 (Suppl 1)
  • [24] Atrial late gadolinium enhancement on MRI relates to the electrophysiological substrate of persistent atrial fibrillation
    Stephanie Clement-Guinaudeau
    Michel Montaudon
    François Laurent
    Pierre Jaïs
    Hubert Cochet
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [25] The association between left atrial stiffness and low-voltage areas of left atrium in patients with atrial fibrillation
    Kishima, Hideyuki
    Mine, Takanao
    Fukuhara, Eiji
    Ashida, Kenki
    Ishihara, Masaharu
    HEART AND VESSELS, 2019, 34 (11) : 1830 - 1838
  • [26] Medical image analysis on left atrial LGE MRI for atrial fibrillation studies: A review
    Li, Lei
    Zimmer, Veronika A.
    Schnabel, Julia A.
    Zhuang, Xiahai
    MEDICAL IMAGE ANALYSIS, 2022, 77
  • [27] Late gadolinium enhancement in the left ventricular wall is associated with atrial fibrillation in patients with hypertrophic cardiomyopathy
    Castelo, Alexandra
    Rosa, Silvia Aguiar
    Fiarresga, Antonio
    Jalles, Nuno
    Ferreira, Vera Vaz
    Bras, Pedro Garcia
    Branco, Luisa Moura
    Oliveira, Mario
    Ferreira, Rui Cruz
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2022, 38 (12) : 2733 - 2741
  • [28] Prospective evaluation of left atrial function and late gadolinium enhancement with 3T MRI in patients with atrial fibrillation before and after catheter ablation
    Curta, Adrian
    Fichtner, Stephanie
    Wakili, Reza
    Estner, Heidi
    Kramer, Harald
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2019, 35 (03) : 499 - 504
  • [29] Mini Review: Deep Learning for Atrial Segmentation From Late Gadolinium-Enhanced MRIs
    Jamart, Kevin
    Xiong, Zhaohan
    Maso Talou, Gonzalo D.
    Stiles, Martin K.
    Zhao, Jichao
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [30] Transesophageal Echocardiographic Assessment of Pulmonary Veins and Left Atrium in Patients Undergoing Atrial Fibrillation Ablation
    Stavrakis, Stavros
    Madden, George
    Pokharel, Dipesh
    Po, Sunny S.
    Nakagawa, Hiroshi
    Jackman, Warren M.
    Sivaram, Chittur A.
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2011, 28 (07): : 775 - 781