Image quality assessment and automation in late gadolinium-enhanced MRI of the left atrium in atrial fibrillation patients

被引:0
|
作者
Orkild, Benjamin [1 ,2 ,3 ]
Sultan, K. M. Arefeen [3 ,4 ]
Kholmovski, Eugene [5 ,6 ]
Kwan, Eugene [1 ,2 ]
Bieging, Erik [5 ,7 ]
Morris, Alan [3 ]
Stoddard, Greg [7 ]
Macleod, Rob S. [1 ,2 ,3 ]
Elhabian, Shireen [3 ,4 ]
Ranjan, Ravi [1 ,2 ,7 ]
Dibella, Ed [1 ,5 ]
机构
[1] Univ Utah, Dept Biomed Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Nora Eccles Harrison Cardiovasc Res & Training Ins, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[4] Univ Utah, Sch Comp, Salt Lake City, UT USA
[5] Univ Utah, Dept Radiol & Imaging Sci, Salt Lake City, UT USA
[6] Johns Hopkins, Dept Biomed Engn, Baltimore, MD USA
[7] Univ Utah, Div Cardiol, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
LGE-MRI; Image quality; Deep learning; Atrial fibrillation; CATHETER ABLATION; FIBROSIS; NOISE;
D O I
10.1007/s10840-024-01971-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundLate gadolinium-enhanced (LGE) MRI has become a widely used technique to non-invasively image the left atrium prior to catheter ablation. However, LGE-MRI images are prone to variable image quality, with quality metrics that do not necessarily correlate to the image's diagnostic quality. In this study, we aimed to define consistent clinically relevant metrics for image and diagnostic quality in 3D LGE-MRI images of the left atrium, have multiple observers assess LGE-MRI image quality to identify key features that measure quality and intra/inter-observer variabilities, and train and test a CNN to assess image quality automatically.MethodsWe identified four image quality categories that impact fibrosis assessment in LGE-MRI images and trained individuals to score 50 consecutive pre-ablation atrial fibrillation LGE-MRI scans from the University of Utah hospital image database. The trained individuals then scored 146 additional scans, which were used to train a convolutional neural network (CNN) to assess diagnostic quality.ResultsThere was excellent agreement among trained observers when scoring LGE-MRI scans, with inter-rater reliability scores ranging from 0.65 to 0.76 for each category. When the quality scores were converted to a binary diagnostic/non-diagnostic, the CNN achieved a sensitivity of 0.80 +/- 0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.80 \pm 0.06$$\end{document} and a specificity of 0.56 +/- 0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.56 \pm 0.10$$\end{document}.ConclusionThe use of a training document with reference examples helped raters achieve excellent agreement in their quality scores. The CNN gave a reasonably accurate classification of diagnostic or non-diagnostic 3D LGE-MRI images of the left atrium, despite the use of a relatively small training set.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI
    Yang, Guang
    Zhuang, Xiahai
    Khan, Habib
    Haldar, Shouvik
    Nyktari, Eva
    Li, Lei
    Wage, Ricardo
    Ye, Xujiong
    Slabaugh, Greg
    Mohiaddin, Raad
    Wong, Tom
    Keegan, Jennifer
    Firmin, David
    MEDICAL PHYSICS, 2018, 45 (04) : 1562 - 1576
  • [2] Fully automatic segmentation of left atrium and pulmonary veins in late gadolinium-enhanced MRI: Towards objective atrial scar assessment
    Tao, Qian
    Ipek, Esra Gucuk
    Shahzad, Rahil
    Berendsen, Floris F.
    Nazarian, Saman
    van der Geest, Rob J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (02) : 346 - 354
  • [3] Automatic bi-atrial segmentation and biomarker extraction from late gadolinium-enhanced MRI using deep learning
    Feng, Fan
    Kennelly, James
    Xiong, Zhaohan
    Nalar, Aaqel
    Sharma, Roshan
    Petersen, Steffen E.
    V. Fedorov, Vadim
    Stiles, Martin K.
    Zhao, Jichao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 278
  • [4] Clinical value of assessment of left atrial late gadolinium enhancement in patients undergoing ablation of atrial fibrillation
    Sramko, Marek
    Peichl, Petr
    Wichterle, Dan
    Tintera, Jaroslav
    Weichet, Jiri
    Maxian, Radoslav
    Pasnisinova, Silvia
    Kockova, Radka
    Kautzner, Josef
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2015, 179 : 351 - 357
  • [5] Uncertainty-guided symmetric multilevel supervision network for 3D left atrium segmentation in late gadolinium-enhanced MRI
    Liu, Yashu
    Wang, Wei
    Luo, Gongning
    Wang, Kuanquan
    Liang, Dong
    Li, Shuo
    MEDICAL PHYSICS, 2022, 49 (07) : 4554 - 4565
  • [6] Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial Late Gadolinium Enhanced MRI Images
    Sultan, K. M. Arefeen
    Orkild, Benjamin
    Morris, Alan
    Kholmovski, Eugene
    Bieging, Erik
    Kwan, Eugene
    Ranjan, Ravi
    DiBella, Ed
    Elhabian, Shireen
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. REGULAR AND CMRXRECON CHALLENGE PAPERS, STACOM 2023, 2024, 14507 : 230 - 239
  • [7] Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment
    Tao, Qian
    Piers, Sebastiaan R. D.
    Lamb, Hildo J.
    van der Geest, Rob J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (02) : 390 - 399
  • [8] Association of left ventricular late gadolinium enhancement with left atrial low voltage areas in patients with atrial fibrillation
    Stegmann, Clara
    Jahnke, Cosima
    Paetsch, Ingo
    Hilbert, Sebastian
    Arya, Arash
    Bollmann, Andreas
    Hindricks, Gerhard
    Sommer, Philipp
    EUROPACE, 2018, 20 (10): : 1606 - 1611
  • [9] Relationship between left atrial tissue structural remodelling detected using late gadolinium enhancement MRI and left ventricular hypertrophy in patients with atrial fibrillation
    Akkaya, Mehmet
    Higuchi, Koji
    Koopmann, Matthias
    Burgon, Nathan
    Erdogan, Ercan
    Damal, Kavitha
    Kholmovski, Eugene
    McGann, Chris
    Marrouche, Nassir F.
    EUROPACE, 2013, 15 (12): : 1725 - 1732
  • [10] Relation between left atrial wall composition by late gadolinium enhancement and complex fractionated atrial electrograms in patients with persistent atrial fibrillation: influence of non-fibrotic substrate in the left atrium
    Hwang, Sung Ho
    Oh, Yu-Whan
    Lee, Dae In
    Shim, Jaemin
    Park, Sang-Weon
    Kim, Young-Hoon
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (06) : 1191 - 1199