CardioNet: A Lightweight Deep Learning Framework for Screening of Myocardial Infarction Using ECG Sensor Data

被引:0
|
作者
Gupta, Kapil [1 ]
Bajaj, Varun [2 ]
Ansari, Irshad Ahmad [3 ]
机构
[1] UPES, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India
[2] MANIT, Dept Elect & Commun Engn, Bhopal 462003, India
[3] Indian Inst Informat Technol & Management Gwalior, Dept Elect & Elect Engn, ABV, Gwalior 474015, India
关键词
Electrocardiography; Accuracy; Sensors; Spectrogram; Deep learning; Databases; Recording; Noise; Information filters; Filtering algorithms; Classification; deep learning; electrocardiogram signals; myocardial infarction (MI); time-frequency (T-F) analysis; CONVOLUTIONAL NEURAL-NETWORK; AUTOMATED DETECTION; CLASSIFICATION; SIGNALS; DECOMPOSITION; LOCALIZATION;
D O I
10.1109/JSEN.2024.3523035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Myocardial infarction (MI) stands as one of the most critical cardiac complications, occurring when blood flow to the cardiovascular system is partially or completely blocked. Electrocardiography (ECG) is an invaluable tool for detecting diverse cardiac irregularities. Manual investigation of MI-induced ECG changes is tedious, laborious, and time-consuming. Nowadays, deep learning-based algorithms are widely investigated to detect various cardiac abnormalities and enhance the performance of medical diagnostic systems. Therefore, this work presents a lightweight deep learning framework (CardioNet) for MI detection using ECG signals. To construct time-frequency (T-F) spectrograms, filtered ECG sensor data are subjected to the short-time Fourier transform (STFT), movable Gaussian window-based S-transform (ST), and smoothed pseudo-Wigner-Ville distribution (SPWVD) methods. To develop an automated MI detection system, obtained spectrograms are fed to benchmark Squeeze-Net, Alex-Net, and a newly developed, lightweight deep learning model. The developed CardioNet with ST-based T-F images has obtained an average classification accuracy of 99.82%, a specificity of 99.57%, and a sensitivity of 99.97%. The proposed system, in combination with a cloud-based algorithm, is suitable for designing wearable to detect several cardiac diseases using other biological signals from the cardiovascular system.
引用
收藏
页码:6794 / 6800
页数:7
相关论文
共 50 条
  • [1] An Overview of Algorithms for Myocardial Infarction Diagnostics Using ECG Signals: Advances and Challenges
    Han, Chuang
    Zhou, Yusen
    Que, Wenge
    Li, Zuhe
    Shi, Li
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning
    Bhaskarpandit, Sathvik
    Gade, Anurag
    Dash, Shaswati
    Dash, Dinesh Kumar
    Tripathy, Rajesh Kumar
    Pachori, Ram Bilas
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] CardioNet: Deep Learning Framework for Prediction of CVD Risk Factors
    Panwar, Madhuri
    Gautam, Arvind
    Dutt, Rashi
    Acharyya, Amit
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [4] Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data
    Rai, Hari Mohan
    Chatterjee, Kalyan
    APPLIED INTELLIGENCE, 2022, 52 (05) : 5366 - 5384
  • [5] Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals
    Jahmunah, V.
    Ng, E. Y. K.
    Tan, Ru-San
    Oh, Shu Lih
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [6] Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review
    Xiong, Ping
    Lee, Simon Ming-Yuen
    Chan, Ging
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [7] ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection
    Sun, Li
    Lu, Yanping
    Yang, Kaitao
    Li, Shaozi
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (12) : 3348 - 3356
  • [8] Prediction analytics of myocardial infarction through model-driven deep deterministic learning
    Iqbal, Uzair
    Wah, Teh Ying
    Rehman, Muhammad Habib ur
    Shah, Jamal Hussain
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20) : 15909 - 15928
  • [9] Accurate detection of myocardial infarction using non linear features with ECG signals
    Sridhar, Chaitra
    Lih, Oh Shu
    Jahmunah, V.
    Koh, Joel E. W.
    Ciaccio, Edward J.
    San, Tan Ru
    Arunkumar, N.
    Kadry, Seifedine
    Rajendra Acharya, U.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (03) : 3227 - 3244
  • [10] A Lightweight Deep Learning Framework for Automatic MRI Data Sorting and Artifacts Detection
    Gao, Ronghui
    Luo, Guoting
    Ding, Renxin
    Yang, Bo
    Sun, Huaiqiang
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)