Minimal codewords over finite fields derived from certain graphs

被引:0
作者
Kim, Boran [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Daegu 41566, South Korea
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2025年 / 17卷 / 04期
基金
新加坡国家研究基金会;
关键词
Linear codes; Minimal codewords; Graphs; LINEAR CODES;
D O I
10.1007/s12095-025-00793-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Throughout this paper, we explore the number of non-equivalent minimal codewords of linear codes derived from certain graphs. We propose a lower bound on the number of non-equivalent minimal codewords over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} associated with graphs of diameter 2. Beyond diameter 2, we also determine the number of non-equivalent minimal codewords over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} for graphs with arbitrary diameter. To achieve this, we study n-cycles and the row spaces generated by some rows from the generator matrix of linear codes. Primarily, our focus is on the number of non-equivalent minimal codewords, and we also provide precise construction methods for identifying minimal codewords in linear codes. To support our results, we present some examples in this work.
引用
收藏
页码:959 / 976
页数:18
相关论文
共 16 条
[1]   Voronoi regions for binary linear block codes [J].
Agrell, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) :310-316
[2]   On the Voronoi neighbor ratio for binary linear block codes [J].
Agrell, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (07) :3064-3072
[3]   The minimum number of minimal codewords in an [n, k]-code and in graphic codes [J].
Alahmadi, A. ;
Aldred, R. E. L. ;
de la Cruz, R. ;
Ok, S. ;
Sole, P. ;
Thomassen, C. .
DISCRETE APPLIED MATHEMATICS, 2015, 184 :32-39
[4]   The maximum number of minimal codewords in an [n, k]-code [J].
Alahmadi, A. ;
Aldred, R. E. L. ;
de la Cruz, R. ;
Sole, P. ;
Thomassen, C. .
DISCRETE MATHEMATICS, 2013, 313 (15) :1569-1574
[5]   THREE COMBINATORIAL PERSPECTIVES ON MINIMAL CODES [J].
Alfarano, Gianira N. ;
Borello, Martino ;
Neri, Alessandro ;
Ravagnani, Alberto .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) :461-489
[6]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[7]   Minimal Linear Codes in Odd Characteristic [J].
Bartoli, Daniele ;
Bonini, Matteo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) :4152-4155
[8]   Minimal linear codes arising from blocking sets [J].
Bonini, Matteo ;
Borello, Martino .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) :327-341
[9]  
BORISSOV Y, 2004, SERDICA MATH J, V30, P303
[10]   ON THE MINIMUM NUMBER OF MINIMAL CODEWORDS [J].
dela Cruz, Romar ;
Kiermaier, Michael ;
Kurz, Sascha ;
Wassermann, Alfred .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, :333-341