Second Main Theorems for Holomorphic Curves in the Projective Space with Slowly Moving Hypersurfaces

被引:1
作者
Shi, Lei [1 ]
Yan, Qiming [2 ]
Yu, Guangsheng [3 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[3] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; second main theorem; holomorphic curve; moving hypersurface;
D O I
10.1007/s10114-024-3393-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:C -> PN(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : {\mathbb C} \rightarrow {{\mathbb P}<^>{N}}({\mathbb C})$$\end{document} be a nonconstant holomorphic curve and Kf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal K}_{f}$$\end{document} be the subfield of meromorphic function field on & Copf; consisting of all meromorphic functions of slow growth with respect to f. Let D1,& mldr;,Dq be slowly moving hypersurfaces defined by homogeneous polynomials in Kf[x0,& mldr;,xN]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal K}_{f}[x_{0},\ldots,x_{N}]$$\end{document}. In this paper, the second main theorems for nonconstant holomorphic curve f and slowly moving hypersurfaces D1,& mldr;,Dq with respect to f are given. The motivation comes from the replacing hypersurfaces technique posed by Si Duc Quang and Nochka weights method.
引用
收藏
页数:25
相关论文
共 45 条
[31]   Second main theorem for holomorphic maps from complex disks with moving hyperplanes [J].
Quang, Si Duc .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (01) :150-166
[32]   DIFFERENCE ANALOGUE OF CARTAN'S SECOND MAIN THEOREM FOR SLOWLY MOVING PERIODIC TARGETS [J].
Korhonen, Risto ;
Li, Nan ;
Tohge, Kazuya .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) :523-549
[33]   SECOND MAIN THEOREMS FOR MEROMORPHIC MAPPINGS AND MOVING HYPERPLANES WITH TRUNCATED COUNTING FUNCTIONS [J].
Si Duc Quang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) :1657-1669
[34]   Weighted second main theorems and algebraic dependences for holomorphic maps from disks [J].
Nhung, Nguyen Thi .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03) :319-336
[35]   Degeneracy second main theorem for meromorphic mappings and moving hypersurfaces with truncated counting functions and applications [J].
Si Duc Quang .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)
[36]   DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND PICARD TYPE THEOREM FOR SLOWLY MOVING PERIODIC TARGETS [J].
Pham, Duc thoan ;
Nguyen, Dang tuyen ;
Luong, Thi tuyet .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (05) :755-775
[37]   ERRATUM TO "SECOND MAIN THEOREMS FOR MEROMORPHIC MAPPINGS AND MOVING HYPERPLANES WITH TRUNCATED COUNTING FUNCTIONS" [J].
Quang, Si Duc .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (07) :3195-3197
[38]   SECOND MAIN THEOREMS AND ALGEBRAIC DEPENDENCE OF MEROMORPHIC MAPPINGS ON PARABOLIC MANIFOLDS WITH MOVING TARGETS [J].
Quang, Si Duc ;
An, Nguyen Van ;
Thoan, Pham Duc .
KYUSHU JOURNAL OF MATHEMATICS, 2023, 77 (02) :203-220
[39]   REMARKS TO CARTAN'S SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO PN(C) [J].
Yang, Liu ;
Shi, Lei ;
Pang, Xuecheng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) :3437-3445
[40]   Difference analogues of the second main theorem of zero-order meromorphic mappings for slowly moving targets [J].
Pham Duc Thoan .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)