Second Main Theorems for Holomorphic Curves in the Projective Space with Slowly Moving Hypersurfaces

被引:1
作者
Shi, Lei [1 ]
Yan, Qiming [2 ]
Yu, Guangsheng [3 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[3] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; second main theorem; holomorphic curve; moving hypersurface;
D O I
10.1007/s10114-024-3393-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:C -> PN(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : {\mathbb C} \rightarrow {{\mathbb P}<^>{N}}({\mathbb C})$$\end{document} be a nonconstant holomorphic curve and Kf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal K}_{f}$$\end{document} be the subfield of meromorphic function field on & Copf; consisting of all meromorphic functions of slow growth with respect to f. Let D1,& mldr;,Dq be slowly moving hypersurfaces defined by homogeneous polynomials in Kf[x0,& mldr;,xN]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal K}_{f}[x_{0},\ldots,x_{N}]$$\end{document}. In this paper, the second main theorems for nonconstant holomorphic curve f and slowly moving hypersurfaces D1,& mldr;,Dq with respect to f are given. The motivation comes from the replacing hypersurfaces technique posed by Si Duc Quang and Nochka weights method.
引用
收藏
页数:25
相关论文
共 45 条
[21]   Weak Cartan-type Second Main Theorem for Holomorphic Curves [J].
Qi Ming YAN Department of MathematicsTongji UniversityShanghai PRChina Zhi Hua CHEN Department of MathematicsTongji UniversityShanghai PRChina .
Acta Mathematica Sinica(English Series), 2008, 24 (03) :455-462
[22]   Weak Cartan-type second main theorem for holomorphic curves [J].
Yan, Qi Ming ;
Chen, Zhi Hua .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) :455-462
[23]   Weak Cartan-type second main theorem for holomorphic curves [J].
Qi Ming Yan ;
Zhi Hua Chen .
Acta Mathematica Sinica, English Series, 2008, 24 :455-462
[24]   The second main theorem with moving hypersurfaces in subgeneral position [J].
Cai, Qili ;
Yang, Chin-Jui .
AIMS MATHEMATICS, 2025, 10 (04) :8818-8826
[25]   SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO ALGEBRAIC VARIETIES WITH THE MOVING TARGETS ON AN ANGULAR DOMAIN [J].
Chen, Jiali ;
Zhang, Qingcai .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) :1191-1213
[26]   A NOTE ON THE SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO ALGEBRAIC VARIETIES [J].
Liao, Hungzen ;
Ru, Min .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04) :671-684
[27]   Second main theorem for meromorphic mappings with moving hypersurfaces in subgeneral position [J].
Si Duc Quang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (01) :604-623
[28]   A Truncated Second Main Theorem for Holomorphic Curves Intersecting Divisors in Subgeneral Position [J].
Yu, Guangsheng ;
Ji, Qingchun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024,
[29]   Applications of difference analogue of Cartan's second main theorem for holomorphic curves [J].
Dyavanal, Renukadevi Sangappa .
JOURNAL OF ANALYSIS, 2020, 28 (02) :615-622
[30]   Applications of difference analogue of Cartan’s second main theorem for holomorphic curves [J].
Renukadevi Sangappa Dyavanal .
The Journal of Analysis, 2020, 28 :615-622