Interpolating supersymmetric pair of Fokker-Planck equations

被引:0
作者
Ho, Choon-Lin [1 ]
机构
[1] Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan
关键词
Fokker-Planck equation; supersymmetry; interpolating equations; ANOMALOUS DIFFUSION; DRIFT;
D O I
10.1088/1402-4896/ad9780
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Fokker-Planck equations that interpolate a pair of supersymmetrically related Fokker-Planck equations with constant diffusion coefficients. Based on the interesting property of shape-invariance, various one-parameter interpolations of the solutions of the supersymmetric pair of Fokker-Planck systems can be directly constructed.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] From continuous time random walks to the fractional Fokker-Planck equation
    Barkai, E
    Metzler, R
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (01) : 132 - 138
  • [2] SUPERSYMMETRY AND THE BISTABLE FOKKER-PLANCK EQUATION
    BERNSTEIN, M
    BROWN, LS
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (22) : 1933 - 1935
  • [3] DIFFUSION IN A BISTABLE POTENTIAL - THE FUNCTIONAL INTEGRAL APPROACH
    CAROLI, B
    CAROLI, C
    ROULET, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) : 83 - 111
  • [4] COOPER F, 1995, PHYS REP, V251, P268
  • [5] Random diffusivity scenarios behind anomalous non-Gaussian diffusion
    dos Santos, M. A. F.
    Colombo, E. H.
    Anteneodo, C.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 152
  • [6] Nonlinear Fokker-Planck equations, H - theorem, and entropies
    dos Santos, M. A. F.
    Lenzi, M. K.
    Lenzi, E. K.
    [J]. CHINESE JOURNAL OF PHYSICS, 2017, 55 (04) : 1294 - 1299
  • [7] Analytic approaches of the anomalous diffusion: A review
    dos Santos, Maike A. F.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 124 : 86 - 96
  • [8] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [9] Similarity Solution for Fractional Diffusion Equation
    Duan, Jun-Sheng
    Guo, Ai-Ping
    Yun, Wen-Zai
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients
    Fa, KS
    [J]. PHYSICAL REVIEW E, 2005, 72 (02):