Communication-efficient estimation and inference for high-dimensional longitudinal data

被引:0
作者
Li, Xing
Peng, Yanjing
Wang, Lei [1 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Decorrelated quadratic inference function; High-dimensional nuisance parameters; Within-subject correlation; CONFIDENCE-INTERVALS; REGRESSION-ANALYSIS; SELECTION; TESTS; REGIONS;
D O I
10.1016/j.csda.2025.108154
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the rapid growth in modern science and technology, distributed longitudinal data have drawn attention in a wide range of aspects. Realizing that not all effects of covariates are our parameters of interest, we focus on the distributed estimation and statistical inference of a pre-conceived low-dimensional parameter in the high-dimensional longitudinal GLMs with canonical links. To mitigate the impact of high-dimensional nuisance parameters and incorporate the within-subject correlation simultaneously, a decorrelated quadratic inference function is proposed for enhancing the estimation efficiency. Two communication-efficient surrogate decorrelated score estimators based on multi-round iterative algorithms are proposed. The error bounds and limiting distribution of the proposed estimators are established and extensive numerical experiments demonstrate the effectiveness of our method. An application to the National Longitudinal Survey of Youth Dataset is also presented.
引用
收藏
页数:22
相关论文
共 28 条
[1]   DISTRIBUTED TESTING AND ESTIMATION UNDER SPARSE HIGH DIMENSIONAL MODELS [J].
Battey, Heather ;
Fan, Jianqing ;
Liu, Han ;
Lu, Junwei ;
Zhu, Ziwei .
ANNALS OF STATISTICS, 2018, 46 (03) :1352-1382
[2]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[3]   A SPLIT-AND-CONQUER APPROACH FOR ANALYSIS OF EXTRAORDINARILY LARGE DATA [J].
Chen, Xueying ;
Xie, Min-ge .
STATISTICA SINICA, 2014, 24 (04) :1655-1684
[4]   REGULARIZED PROJECTION SCORE ESTIMATION OF TREATMENT EFFECTS IN HIGH-DIMENSIONAL QUANTILE REGRESSION [J].
Cheng, Chao ;
Feng, Xingdong ;
Huang, Jian ;
Liu, Xu .
STATISTICA SINICA, 2022, 32 (01) :23-41
[5]   Heterogeneity-aware and communication-efficient distributed statistical inference [J].
Duan, Rui ;
Ning, Yang ;
Chen, Yong .
BIOMETRIKA, 2022, 109 (01) :67-83
[6]  
Fan J., 2021, J. Am. Stat. Assoc., V2021, P1
[7]  
Fang EX, 2020, ANN STAT, V48, P2622, DOI [10.1214/19-AOS1900, 10.1214/19-aos1900]
[8]   Testing and confidence intervals for high dimensional proportional hazards models [J].
Fang, Ethan X. ;
Ning, Yang ;
Liu, Han .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (05) :1415-1437
[9]  
Hu A., 2020, IEEE Access, V8
[10]  
Javanmard A., 2013, Adv. Neural Inf. Process. Syst., P1187