Generating Steering Orbital Angular Momentum Vortex Beams Using Conical Conformal Array Antenna

被引:1
作者
Tan, Shilong [1 ]
Yu, Shixing [1 ]
Kou, Na [1 ]
机构
[1] Guizhou Univ, Coll Big Data & Informat Engn, Engn Res Ctr Power Semicond Device Reliabil, Minist Educ,Key Lab Micronano Elect & Software Tec, Guiyang 550025, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2025年 / 24卷 / 02期
基金
中国国家自然科学基金;
关键词
Conical conformal; orbital angular momentum (OAM); phased array antenna; and vortex beam; PERFORMANCE; WAVES;
D O I
10.1109/LAWP.2024.3502398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose using the conical conformal array antenna to launch the steering electromagnetic orbital angular momentum (OAM) vortex waves. First, the theoretical calculation method for generating the steering OAM beams using conical array antenna is deduced and the formula of compensated phase shift for each antenna unit located in the conical array is derived. In addition, a polarization correction approach is proposed to achieve better radiation characteristics of the OAM vortex beam. Next, a prototype of a conical conformal array antenna, which consists of 114 U-slot microstrip patch antennas, is fabricated and experimentally verified. The measured results indicate that using the conical array antenna to launch steering OAM vortex beams directed at the elevation angle of 0 degrees to 60 degrees can prevent significant distortion and guarantee high mode purity even though the scanning angle becomes large. This could serve as a reference for potential future applications of electromagnetic vortex communication on a conformal carrier.
引用
收藏
页码:429 / 433
页数:5
相关论文
共 50 条
[41]   Effect of the Orientation of the Array Elements of Uniform Circular Antenna Arrays on Orbital Angular Momentum (OAM) Modes [J].
Wulff, M. ;
Wang, L. ;
Yang, C. ;
Schuster, C. .
PROCEEDINGS OF THE 2022 14TH GERMAN MICROWAVE CONFERENCE (GEMIC), 2022, :164-167
[42]   Enhanced SAR imaging using multiple plane spiral orbital angular momentum beams [J].
Yang, Ting ;
Shi, Hongyin ;
Qiao, Zhijun .
MEASUREMENT, 2022, 202
[43]   Attenuation of Orbital Angular Momentum Beam Transmission With a Parabolic Antenna [J].
Wu, Qiuli ;
Jiang, Xuefeng ;
Zhang, Chao .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (10) :1849-1853
[44]   Full control of conical beam carrying orbital angular momentum by reflective metasurface [J].
Ding, Guowen ;
Chen, Ke ;
Jiang, Tian ;
Sima, Boyu ;
Zhao, Junming ;
Feng, Yijun .
OPTICS EXPRESS, 2018, 26 (16) :20990-21002
[45]   Review of vortex beam orbital angular momentum mode detection methods [J].
Lv, Jiangtao ;
Liu, Chunli ;
Shen, Mengzhe ;
Wang, Dapeng ;
Si, Guangyuan ;
Ou, Qingdong .
MATERIALS TODAY COMMUNICATIONS, 2024, 40
[46]   Generation of Wideband Tunable Orbital Angular Momentum Vortex Waves Using Graphene Metamaterial Reflectarray [J].
Shi, Yan ;
Zhang, Ying .
IEEE ACCESS, 2018, 6 :5341-5347
[47]   Realization of Beam Steering Based on Plane Spiral Orbital Angular Momentum Wave [J].
Zheng, Shilie ;
Chen, Yiling ;
Zhang, Zhuofan ;
Jin, Xiaofeng ;
Chi, Hao ;
Zhang, Xianmin ;
Chen, Zhi Ning .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (03) :1352-1358
[48]   Phase Mode Analysis of Radio Beams Carrying Orbital Angular Momentum [J].
Yao, Yu ;
Liang, Xianling ;
Zhu, Weiren ;
Geng, Junping ;
Jin, Ronghong .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 :1127-1130
[49]   Characterization of Orbital Angular Momentum Beams by Polar Mapping and Fourier Transform [J].
Grunwald, Ruediger ;
Bock, Martin .
PHOTONICS, 2024, 11 (04)
[50]   Classifying beams carrying orbital angular momentum with machine learning: tutorial [J].
Avramov-zamurovic, S. V. E. T. L. A. N. A. ;
Esposito, Joel M. ;
Nelson, C. H. A. R. L. E. S. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (01) :64-77