Exploring Deep Reinforcement Learning Algorithms for Enhanced HVAC Control

被引:0
|
作者
Manjavacas, Antonio [1 ]
Campoy-Nieves, Alejandro [1 ]
Molina-Solana, Miguel [1 ]
Gomez-Romero, Juan [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
关键词
Reinforcement learning; Building energy optimization; HVAC;
D O I
10.1007/978-3-031-65993-5_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heating, Ventilation, and Air Conditioning (HVAC) systems are one of the major sources of energy consumption in buildings. Typically, HVAC control has relied on reactive controllers, which often lack the ability to adapt to specific building dynamics. In recent years, Deep Reinforcement Learning (DRL) algorithms have emerged as a potential alternative to reactive controllers. However, these solutions are still immature, with a lack of standardisation and difficulties in real-world deployment. This paper presents an empirical evaluation of several state-of-the-art DRL algorithms for HVAC control, highlighting their main strengths and limitations. We emphasize the importance of using standard frameworks for comparative analysis, enabling a more comprehensive assessment of these innovative approaches to HVAC control.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条
  • [1] An experimental evaluation of deep reinforcement learning algorithms for HVAC control
    Manjavacas, Antonio
    Campoy-Nieves, Alejandro
    Jimenez-Raboso, Javier
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [2] Enhanced Strategies for Off-Policy Reinforcement Learning Algorithms in HVAC Control
    Chen, Zhe
    Jia, Qingshan
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1691 - 1696
  • [3] Deep Reinforcement Learning for Building HVAC Control
    Wei, Tianshu
    Wang, Yanzhi
    Zhu, Qi
    PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
  • [4] Development of an HVAC system control method using weather forecasting data with deep reinforcement learning algorithms
    Shin, Minjae
    Kim, Sungsoo
    Kim, Youngjin
    Song, Ahhyun
    Kim, Yeeun
    Kim, Ha Young
    BUILDING AND ENVIRONMENT, 2024, 248
  • [5] Deep Reinforcement Learning for Residential HVAC Control with Consideration of Human Occupancy
    McKee, Evan
    Du, Yan
    Li, Fangxing
    Munk, Jeffrey
    Johnston, Travis
    Kurte, Kuldeep
    Kotevska, Olivera
    Amasyali, Kadir
    Zandi, Helia
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [6] Enhancing HVAC control systems through transfer learning with deep reinforcement learning agents
    Kadamala, Kevlyn
    Chambers, Des
    Barrett, Enda
    SMART ENERGY, 2024, 13
  • [7] Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings
    Yu, Liang
    Sun, Yi
    Xu, Zhanbo
    Shen, Chao
    Yue, Dong
    Jiang, Tao
    Guan, Xiaohong
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 407 - 419
  • [8] Deep Reinforcement Learning based HVAC Control for Reducing Carbon Footprint of Buildings
    Kurte, Kuldeep
    Amasyali, Kadir
    Munk, Jeffrey
    Zandi, Helia
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [9] Modelling building HVAC control strategies using a deep reinforcement learning approach
    Nguyen, Anh Tuan
    Pham, Duy Hoang
    Oo, Bee Lan
    Santamouris, Mattheos
    Ahn, Yonghan
    Lim, Benson T. H.
    ENERGY AND BUILDINGS, 2024, 310
  • [10] Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control
    Biemann, Marco
    Scheller, Fabian
    Liu, Xiufeng
    Huang, Lizhen
    APPLIED ENERGY, 2021, 298