Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction

被引:0
作者
Tian, Yuxin [1 ,2 ]
Zhang, Qiliang [1 ,3 ]
Li, Xiaomeng [1 ,3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Minist Educ, Engn Res Ctr Mine Digitalizat, Xuzhou 221116, Jiangsu, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024 | 2024年 / 14876卷
关键词
Traffic Flow Prediction; Graph Convolutional Network; Attention Mechanism; NEURAL-NETWORKS;
D O I
10.1007/978-981-97-5666-7_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Timely and accurate traffic flow prediction holds significant value for public commuting and urban traffic management. However, the independent temporal and spatial components in recent methods struggle to fully capture the underlying spatial-temporal relationships and multi-scale temporal features. To overcome these limitations, we propose a novel attention based multi-scale spatial-temporal fusion propagation graph network to effectively model the spatial-temporal relationships in traffic data. Specifically, we design a multi-scale spatial-temporal mix-hop graph convolution module and a spatial-temporal attention-mechanism to explore the spatial-temporal relationships in traffic data through a cohesive modeling approach. Extensive experiments conducted on four real-world traffic flow datasets demonstrate that our model significantly outperforms baseline methods.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 20 条
[1]  
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271]
[2]  
Chen C, 2001, TRANSPORT RES REC, P96
[3]   RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION [J].
CONNOR, JT ;
MARTIN, RD ;
ATLAS, LE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :240-254
[4]  
Guo SN, 2019, AAAI CONF ARTIF INTE, P922
[5]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[6]  
Huang RZ, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2355
[7]   Graph neural network for traffic forecasting: A survey [J].
Jiang, Weiwei ;
Luo, Jiayun .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
[8]   Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey [J].
Jin, Guangyin ;
Liang, Yuxuan ;
Fang, Yuchen ;
Shao, Zezhi ;
Huang, Jincai ;
Zhang, Junbo ;
Zheng, Yu .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) :5388-5408
[9]  
Li MZ, 2021, AAAI CONF ARTIF INTE, V35, P4189
[10]  
Li YG, 2018, Arxiv, DOI [arXiv:1707.01926, DOI 10.48550/ARXIV.1707.01926]