Artificial Intelligence in Head and Neck Cancer Diagnosis: A Comprehensive Review with Emphasis on Radiomics, Histopathological, and Molecular Applications

被引:10
作者
Broggi, Giuseppe [1 ]
Maniaci, Antonino [2 ,3 ]
Lentini, Mario [2 ,3 ]
Palicelli, Andrea [4 ]
Zanelli, Magda [4 ]
Zizzo, Maurizio [5 ]
Koufopoulos, Nektarios [6 ]
Salzano, Serena [1 ]
Mazzucchelli, Manuel [1 ]
Caltabiano, Rosario [1 ]
机构
[1] Univ Catania, Dept Med Surg Sci & Adv Technol GF Ingrassia, Anat Pathol, I-95123 Catania, Italy
[2] Univ Enna Kore, Dept Med & Surg, I-94100 Enna, Italy
[3] ASP Ragusa Hosp Giovanni Paolo II, I-97100 Ragusa, Italy
[4] Azienda USL IRCCS Reggio Emilia, Pathol Unit, I-42123 Reggio Emilia, Italy
[5] Azienda USL IRCCS Reggio Emilia, Surg Oncol Unit, I-42123 Reggio Emilia, Italy
[6] Natl & Kapodistrian Univ Athens, Attikon Univ Hosp, Med Sch, Dept Pathol 2, Athens 15772, Greece
关键词
head and neck cancer; artificial intelligence; machine learning; deep learning; diagnosis; PREDICTION;
D O I
10.3390/cancers16213623
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The present review discusses the transformative role of AI in the diagnosis and management of head and neck cancers (HNCs). Methods: It explores how AI technologies, including ML, DL, and CNNs, are applied in various diagnostic tasks, such as medical imaging, molecular profiling, and predictive modeling. Results: This review highlights AI's ability to improve diagnostic accuracy and efficiency, particularly in analyzing medical images like CT, MRI, and PET scans, where AI sometimes outperforms human radiologists. This paper also emphasizes AI's application in histopathology, where algorithms assist in whole-slide image (WSI) analysis, tumor-infiltrating lymphocytes (TILs) quantification, and tumor segmentation. AI shows promise in identifying subtle or rare histopathological patterns and enhancing the precision of tumor grading and treatment planning. Furthermore, the integration of AI with molecular and genomic data aids in mutation analysis, prognosis, and personalized treatment strategies. Conclusions: Despite these advancements, the review identifies challenges in AI adoption, such as data standardization and model interpretability, and calls for further research to fully integrate AI into clinical practice for improved patient outcomes.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review [J].
Adeoye, John ;
Tan, Jia Yan ;
Choi, Siu-Wai ;
Thomson, Peter .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 154
[2]   Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation [J].
Ahervo, H. ;
Korhonen, J. ;
Ming, S. Lim Wei ;
Yunqing, F. Guan ;
Soini, M. ;
Ling, C. Lian Pei ;
Metsala, E. .
RADIOGRAPHY, 2023, 29 (03) :496-502
[3]   Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi ;
Makitie, Antti A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 188
[4]   Modern radiotherapy for head and neck cancer [J].
Alterio, Daniela ;
Marvaso, Giulia ;
Ferrari, Annamaria ;
Volpe, Stefania ;
Orecchia, Roberto ;
Jereczek-Fossaa, Barbara Alicja .
SEMINARS IN ONCOLOGY, 2019, 46 (03) :233-245
[5]   Genetic sequence variants and the development of secondary primary cancers in patients with head and neck cancers [J].
Azad, Abul Kalam ;
Bairati, Isabelle ;
Samson, Elodie ;
Cheng, Dangxiao ;
Cheng, Lu ;
Mirshams, Maryam ;
Savas, Sevtap ;
Waldron, John ;
Wang, Changshu ;
Goldstein, David ;
Xu, Wei ;
Meyer, Francois ;
Liu, Geoffrey .
CANCER, 2012, 118 (06) :1554-1565
[6]   Artificial intelligence to predict outcomes of head and neck radiotherapy [J].
Bang, Chulmin ;
Bernard, Galaad ;
Le, Wlliam T. ;
Lalonde, Arthur ;
Kadoury, Samuel ;
Bahig, Houda .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2023, 39
[7]  
Bassani Sara, 2022, J Pathol Inform, V13, P100153, DOI 10.1016/j.jpi.2022.100153
[8]   Artificial Intelligence and Laryngeal Cancer: From Screening to Prognosis: A State of the Art Review [J].
Bensoussan, Yael ;
Vanstrum, Erik B. ;
Johns, Michael M., III ;
Rameau, Anais .
OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2023, 168 (03) :319-329
[9]   Relevance of apparent diffusion coefficient features for a radiomics-based prediction of response to induction chemotherapy in sinonasal cancer [J].
Bologna, Marco ;
Calareso, Giuseppina ;
Resteghini, Carlo ;
Sdao, Silvana ;
Montin, Eros ;
Corino, Valentina ;
Mainardi, Luca ;
Licitra, Lisa ;
Bossi, Paolo .
NMR IN BIOMEDICINE, 2022, 35 (04)
[10]   Lymph node ratio as a prognostic factor in head and neck cancer patients [J].
Chen, Chien-Chih ;
Lin, Jin-Ching ;
Chen, Kuan-Wen .
RADIATION ONCOLOGY, 2015, 10