Surrogate model of turbulent transport in fusion plasmas using machine learning

被引:0
作者
Li, H. [1 ]
Wang, L. [2 ]
Fu, Y. L. [3 ,4 ]
Wang, Z. X. [1 ]
Wang, T. B. [2 ]
Li, J. Q. [2 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[2] Southwestern Inst Phys, Chengdu 610041, Peoples R China
[3] Chinese Acad Sci, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret & Computat Chem, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; fusion plasma; turbulence; energy transport; CONFINEMENT; NETWORKS;
D O I
10.1088/1741-4326/ad8b5b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The advent of machine learning (ML) has revolutionized the research of plasma confinement, offering new avenues for exploration. It enables the construction of models that effectively streamline the simulation process. While previous first-principles simulations have provided physics-based transport information, they have been inadequate fast for real-time applications or plasma control. In order to address this challenge, we introduce SExFC, a surrogate model based on the Gyro-Landau Extended Fluid Code (ExFC). An approach of physics-based database construction is detailed, as well the validity is illustrated. Through harnessing the power of ML, SExFC offers the capability to deliver rapid and precise predictions, facilitating real-time applications and enhancing plasma control. The proposed model integrates the recurrent neural network (RNN) algorithm, specifically leveraging the Gated Recurrent Unit (GRU) for iterative prediction of flux evolutions based on radial profiles. Therefore, the SExFC model has the potential to enable rapid and physics-based predictions that can be seamlessly integrated into future real-time plasma control systems.
引用
收藏
页数:15
相关论文
共 64 条
  • [1] Prediction of Turbulence Temporal Evolution in PANTA by Long-Short Term Memory Network
    Aizawacaranza, Masaomi
    Sasaki, Makoto
    Minagawa, Hiroki
    Nakazawa, Yuuki
    Liu, Yoshitatsu
    Jajima, Yuki
    Kawachi, Yuichi
    Arakawa, Hiroyuki
    Hara, Kazuyuki
    [J]. PLASMA AND FUSION RESEARCH, 2022, 17
  • [2] NEURAL NETWORK APPROACH TO ENERGY CONFINEMENT SCALING IN TOKAMAKS
    ALLEN, L
    BISHOP, CM
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1992, 34 (07) : 1291 - 1302
  • [3] Bishop C.M., 1995, P INT C ART NEUR NET, Vvol 269, pR64, DOI [10.1152/ajpregu.1995.269.1.R64, DOI 10.1152/AJPREGU.1995.269.1.R64]
  • [4] Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz
    Bourdelle, C.
    Citrin, J.
    Baiocchi, B.
    Casati, A.
    Cottier, P.
    Garbet, X.
    Imbeaux, F.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
  • [5] Real-time capable modeling of neutral beam injection on NSTX-U using neural networks
    Boyer, M. D.
    Kaye, S.
    Erickson, K.
    [J]. NUCLEAR FUSION, 2019, 59 (05)
  • [6] Impact of E x B flow shear stabilization on particle confinement and density peaking at JET
    Buangam, W.
    Garcia, J.
    Onjun, T.
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (06)
  • [7] Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER
    Chang, C. S.
    Ku, S.
    Loarte, A.
    Parail, V.
    Koechl, F.
    Romanelli, M.
    Maingi, R.
    Ahn, J. -W.
    Gray, T.
    Hughes, J.
    LaBombard, B.
    Leonard, T.
    Makowski, M.
    Terry, J.
    [J]. NUCLEAR FUSION, 2017, 57 (11)
  • [8] Cho KYHY, 2014, Arxiv, DOI [arXiv:1406.1078, DOI 10.48550/ARXIV.1406.1078]
  • [9] Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz
    Citrin, J.
    Bourdelle, C.
    Casson, F. J.
    Angioni, C.
    Bonanomi, N.
    Camenen, Y.
    Garbet, X.
    Garzotti, L.
    Goerler, T.
    Gurcan, O.
    Koechl, F.
    Imbeaux, F.
    Linder, O.
    van de Plassche, K.
    Strand, P.
    Szepesi, G.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (12)
  • [10] Real-time capable first principle based modelling of tokamak turbulent transport
    Citrin, J.
    Breton, S.
    Felici, F.
    Imbeaux, F.
    Aniel, T.
    Artaud, J. F.
    Baiocchi, B.
    Bourdelle, C.
    Camenen, Y.
    Garcia, J.
    [J]. NUCLEAR FUSION, 2015, 55 (09)