Unlocking Enhanced Redox Dynamics: The Power of a Bifunctional Catalytic Zinc Phosphide Interface in Full Cell and Pouch Lithium-Sulfur Batteries

被引:0
作者
Das, Anoushka K. [1 ,2 ]
Yadav, Poonam [1 ,2 ]
Verma, Tushar S. [1 ,2 ]
Marulasiddappa, Thripuranthaka [1 ,2 ]
Krishnamurty, Sailaja [1 ,2 ]
Shelke, Manjusha V. [1 ,2 ]
机构
[1] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
关键词
lithium sulfur battery; catalytic interlayer; polysulfide shuttling; pouchcell; full cell; lithium dendrite; CARBON-MODIFIED SEPARATOR; PERFORMANCE; POLYSULFIDES;
D O I
10.1021/acsami.4c17192
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-sulfur (Li-S) batteries face significant challenges, such as polysulfide dissolution, sluggish reaction kinetics, and lithium anode corrosion, hindering their practical application. Herein, we report a highly effective approach using a zinc phosphide (ZnP2) bifunctional catalyst to address these issues. The ZnP2 catalyst effectively anchors lithium polysulfides (LiPSs), catalytically reactivates them, and enhances lithium-ion diffusion. Utilizing a ZnP2-modified separator in a Li-S half-cell achieves an impressive initial capacity of 1145.4 mAh g-1, retaining 954 mAh g-1 and 99.8% Coulombic efficiency after 100 cycles, compared to the pristine separator. The underlying reaction mechanisms are thoroughly investigated through post-mortem analyses and density functional theory (DFT) calculations. Moreover, a Li-S full cell with an E/S ratio of 10 mu L mg-1 demonstrates stable cycling performance, achieving an initial capacity of 797.5 and 534 mAh g-1 after 100 cycles at 0.1C, with a negative-to-positive mass ratio of 3:1. Additionally, the real-world feasibility of lightweight and flexible Li-S pouch batteries with ZnP2-modified separators is explored, showing a stable performance over 100 cycles at 0.1C with 80% capacity retention. This engineered separator can be integrated with advanced sulfur cathodes to create high-energy-density, stable Li-S batteries for commercial applications.
引用
收藏
页码:7657 / 7669
页数:13
相关论文
共 53 条
  • [11] Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries
    Hencz, Luke
    Chen, Hao
    Wu, Zhenzhen
    Gu, Xingxing
    Li, Meng
    Tian, Yuhui
    Chen, Su
    Yan, Cheng
    Bati, Abdulaziz S. R.
    Shapter, Joseph G.
    Kiefel, Milton
    Li, Dong-Sheng
    Zhang, Shanqing
    [J]. GREEN ENERGY & ENVIRONMENT, 2022, 7 (06) : 1206 - 1216
  • [12] Transition metal phosphides: new generation cathode host/separator modifier for Li-S batteries
    Huang, Song
    Huixiang, Edison
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (12) : 7458 - 7480
  • [13] A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li-S batteries
    Huang, Wen
    Ruan, Daqian
    Chen, Hui
    Hu, Kai
    Wen, Juan
    Yan, Wenqi
    Zhu, Yusong
    Zhang, Yi
    Yu, Nengfei
    Wu, Yuping
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (08) : 4264 - 4272
  • [14] The Li-S battery: an investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes
    Lacey, Matthew J.
    Yalamanchili, Anurag
    Maibach, Julia
    Tengstedt, Carl
    Edstrom, Kristina
    Brandell, Daniel
    [J]. RSC ADVANCES, 2016, 6 (05) : 3632 - 3641
  • [15] Inhibition of Polysulfide Shuttles in Li-S Batteries: Modified Separators and Solid-State Electrolytes
    Li, Shulian
    Zhang, Weifeng
    Zheng, Jiafen
    Lv, Mengyuan
    Song, Huiyu
    Du, Li
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (02)
  • [16] An amorphous Zn-P/graphite composite with chemical bonding for ultra-reversible lithium storage
    Li, Wenwu
    Yu, Jiale
    Wen, Jiajun
    Liao, Jun
    Ye, Ziyao
    Zhao, Bote
    Li, Xinwei
    Zhang, Haiyan
    Liu, Meilin
    Guo, Zaiping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) : 16785 - 16792
  • [17] A highly efficient polysulfide mediator for lithium-sulfur batteries
    Liang, Xiao
    Hart, Connor
    Pang, Quan
    Garsuch, Arnd
    Weiss, Thomas
    Nazar, Linda F.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [18] CoP/C Nanocubes-Modified Separator Suppressing Polysulfide Dissolution for High-Rate and Stable Lithium-Sulfur Batteries
    Lin, Jiahao
    Zhang, Kefu
    Zhu, Zhaoqiang
    Zhang, Ruizhi
    Li, Nan
    Zhao, Chunhua
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 2497 - 2504
  • [19] Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries
    Liu, Guangzeng
    Zhang, Zhengchunyu
    Tian, Wenzhi
    Chen, Weihua
    Xi, Baojuan
    Li, Haibo
    Feng, Jinkui
    Xiong, Shengtin
    [J]. NANOSCALE, 2020, 12 (19) : 10760 - 10770
  • [20] A Sustainable and Cost-Effective Nitrogen-Doped Three-Dimensional Porous Carbon for High-Performance Lithium-Sulfur Batteries
    Ma, Shuang
    Liu, Xuecheng
    Chen, Tiezhu
    Wang, Yan
    Wang, Minsheng
    Jiang, Fengyi
    Zhou, Xia
    Gu, Xingxing
    [J]. CHEMSUSCHEM, 2024, 17 (22)