Are There High-Density Deep States in an Atomic-Layer-Deposited Indium-Gallium-Zinc Oxide Thin Film?

被引:0
作者
Zheng, Liankai [1 ]
Xing, Lijuan [2 ]
Lin, Zhiyu [1 ]
Zhao, Wanpeng [2 ]
Fan, Yuyan [3 ]
Dong, Yulong [3 ]
Wang, Ziheng [1 ]
Li, Siying [1 ,4 ]
Li, Xiuyan [3 ]
Wu, Ying [2 ]
Xu, Jeffrey [2 ]
Si, Mengwei [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[2] Huawei Technol Co Ltd, Shenzhen 523808, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Nano Microelect, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
atomic layer deposition; indium-gallium-zincoxide; thin-film transistor; deep state; SUBGAP DOS; TRANSISTORS; EXTRACTION; BANDGAP;
D O I
10.1021/acs.nanolett.5c01673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It has been well recognized that high-density deep states exist in indium-gallium-zinc oxide (IGZO) thin films. Many of the device characteristics of IGZO transistors, such as negative bias illumination stability (NBIS), are understood to be related to these deep states. However, in this work, it was found that the deep-state density (N-tD) of atomic-layer-deposited (ALD) IGZO transistors can be an ultralow value (<2.3 x 10(12)/cm(3)) by the proposed NBIS-free light-assisted I-V measurements so that the deep states do not affect the I-V characteristics even in the subthreshold region. This work also reveals that NBIS is not related to the photoexcitation of electrons in the deep states. Our results suggest that the existence of deep states and the impact of deep states on ALD IGZO transistors may need to be revisited.
引用
收藏
页码:5974 / 5980
页数:7
相关论文
共 33 条
[1]   Fully Current-Based Sub-Bandgap Optoelectronic Differential Ideality Factor Technique and Extraction of Subgap DOS in Amorphous Semiconductor TFTs [J].
Bae, Hagyoul ;
Seo, Hyojoon ;
Jun, Sungwoo ;
Choi, Hyunjun ;
Ahn, Jaeyeop ;
Hwang, Junseok ;
Lee, Jungmin ;
Oh, Saeroonter ;
Bae, Jong-Uk ;
Choi, Sung-Jin ;
Kim, Dae Hwan ;
Kim, Dong Myong .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (10) :3566-3569
[2]   Single-Scan Monochromatic Photonic Capacitance-Voltage Technique for Extraction of Subgap DOS Over the Bandgap in Amorphous Semiconductor TFTs [J].
Bae, Hagyoul ;
Choi, Hyunjun ;
Jun, Sungwoo ;
Jo, Chunhyung ;
Kim, Yun Hyeok ;
Hwang, Jun Seok ;
Ahn, Jaeyeop ;
Oh, Saeroonter ;
Bae, Jong-Uk ;
Choi, Sung-Jin ;
Kim, Dae Hwan ;
Kim, Dong Myong .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (12) :1524-1526
[3]   Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications [J].
Bang, Joonho ;
Matsuishi, Satoru ;
Hosono, Hideo .
APPLIED PHYSICS LETTERS, 2017, 110 (23)
[4]   Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating &gt; 103s retention, &gt; 1011 cycles endurance and Lg scalability down to 14nm [J].
Belmonte, A. ;
Oh, H. ;
Subhechha, S. ;
Rassoul, N. ;
Hody, H. ;
Dekkers, H. ;
Delhougne, R. ;
Ricotti, L. ;
Banerjee, K. ;
Chasin, A. ;
van Setten, M. J. ;
Puliyalil, H. ;
Pak, M. ;
Teugels, L. ;
Tsvetanova, D. ;
Vandersmissen, K. ;
Kundu, S. ;
Heijlen, J. ;
Batuk, D. ;
Geypen, J. ;
Goux, L. ;
Kar, G. S. .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[5]  
Chakraborty W, 2020, S VLSI TECH
[6]  
Chen C.-K., 2023, IEEE INT EL DEV M, p41.2.1
[7]   Method to Extract Interface and Bulk Trap Separately Over the Full Sub-Gap Range in Amorphous InGaZnO Thin-Film Transistors by Using Various Channel Thicknesses [J].
Choi, Sungju ;
Kim, Jae-Young ;
Rhee, Jihyun ;
Kang, Hara ;
Park, Shinyoung ;
Kim, Dong Myong ;
Choi, Sung-Jin ;
Kim, Dae Hwan .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) :574-577
[8]  
Deng S., 2024, P IEEE S VLSI TECHN, pTFS1.3.1
[9]   Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems [J].
Duan, Moming ;
Liu, Duo ;
Chen, Xianzhang ;
Liu, Renping ;
Tan, Yujuan ;
Liang, Liang .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (01) :59-71
[10]   How we made the IGZO transistor [J].
Hosono, Hideo .
NATURE ELECTRONICS, 2018, 1 (07) :428-428