Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Deep Spatio-Temporal Attention Model for Grain Storage Temperature Forecasting
    Duan, Shanshan
    Yang, Weidong
    Wang, Xuyu
    Mao, Shiwen
    Zhang, Yuan
    2020 IEEE 26TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2020, : 593 - 600
  • [42] Combining heterogeneous data sources for spatio-temporal mobility demand forecasting
    Prado-Rujas, Ignacio-Iker
    Serrano, Emilio
    Garcia-Dopico, Antonio
    Cordoba, M. Luisa
    Perez, Maria S.
    INFORMATION FUSION, 2023, 91 : 1 - 12
  • [43] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149
  • [44] Deep integro-difference equation models for spatio-temporal forecasting
    Zammit-Mangion, Andrew
    Wikle, Christopher K.
    SPATIAL STATISTICS, 2020, 37
  • [45] Evaluation of spatio-temporal forecasting methods in various smart city applications
    Tascikaraoglu, Akin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 424 - 435
  • [46] Exploring a multi-output temporal convolutional network driven encoder-decoder framework for ammonia nitrogen forecasting
    Sheng, Sheng
    Lin, Kangling
    Zhou, Yanlai
    Chen, Hua
    Luo, Yuxuan
    Guo, Shenglian
    Xu, Chong -Yu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 342
  • [47] A Deep Spatio-Temporal Forecasting Model for Multi-Site Weather Prediction Post-Processing
    Kong, Wenjia
    Li, Haochen
    Yu, Chen
    Xia, Jiangjiang
    Kang, Yanyan
    Zhang, Pingwen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (01) : 131 - 153
  • [48] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238
  • [49] Componentnet: Processing U- and V-components for spatio-Temporal wind speed forecasting
    Bastos B.Q.
    Cyrino Oliveira F.L.
    Milidiú R.L.
    Electric Power Systems Research, 2021, 192
  • [50] Componentnet: Processing U- and V-components for spatio-Temporal wind speed forecasting
    Bastos, Bruno Quaresma
    Cyrino Oliveira, Fernando L.
    Milidiu, Ruy Luiz
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 192