Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting
    Corpas-Burgos, Francisca
    Martinez-Beneito, Miguel A.
    MATHEMATICS, 2021, 9 (04) : 1 - 17
  • [42] Biased resampling strategies for imbalanced spatio-temporal forecasting
    Oliveira, Mariana
    Moniz, Nuno
    Torgo, Luis
    Santos Costa, Vitor
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2021, 12 (03) : 205 - 228
  • [43] Deep Latent Factor Model for Spatio-Temporal Forecasting
    Koo, Wonmo
    Ma, Eun-Yeol
    Kim, Heeyoung
    TECHNOMETRICS, 2024, 66 (03) : 470 - 482
  • [44] Foresight plus: serverless spatio-temporal traffic forecasting
    Oakley, Joe
    Conlan, Chris
    Demirci, Gunduz Vehbi
    Sfyridis, Alexandros
    Ferhatosmanoglu, Hakan
    GEOINFORMATICA, 2024, 28 (04) : 649 - 677
  • [45] A residual spatio-temporal architecture for travel demand forecasting
    Guo, Ge
    Zhang, Tianqi
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 115
  • [46] Spatio-Temporal Graph Structure Learning for Traffic Forecasting
    Zhang, Qi
    Chang, Jianlong
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1177 - 1185
  • [47] RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
    Pal, Soumyasundar
    Ma, Liheng
    Zhang, Yingxue
    Coates, Mark
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [48] Traffic Forecasting with Spatio-Temporal Graph Neural Networks
    Shah, Shehal
    Doshi, Prince
    Mangle, Shlok
    Tawde, Prachi
    Sawant, Vinaya
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 183 - 197
  • [49] A Unified Graph Formulation for Spatio-Temporal Wind Forecasting
    Bentsen, Lars odegaard
    Warakagoda, Narada Dilp
    Stenbro, Roy
    Engelstad, Paal
    ENERGIES, 2023, 16 (20)
  • [50] DeepWind: a heterogeneous spatio-temporal model for wind forecasting
    Wang, Bin
    Shi, Junrui
    Tan, Binyu
    Ma, Minbo
    Hong, Feng
    Yu, Yanwei
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 286