Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Conditional Local Convolution for Spatio-Temporal Meteorological Forecasting
    Lin, Haitao
    Gao, Zhangyang
    Xu, Yongjie
    Wu, Lirong
    Li, Ling
    Li, Stan Z.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7470 - 7478
  • [32] Frigate: Frugal Spatio-temporal Forecasting on Road Networks
    Gupta, Mridul
    Kodamana, Hariprasad
    Ranu, Sayan
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 649 - 660
  • [33] Deep Spatio-Temporal Fuzzy Model for NDVI Forecasting
    Su, Zhao
    Shen, Jun
    Sun, Yu
    Hu, Rizhen
    Zhou, Qingguo
    Yong, Binbin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 290 - 301
  • [34] Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (02) : 780 - 789
  • [35] A spatio-temporal forecasting method of railway passenger flow
    Xu, W
    Huang, HK
    Qin, Y
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1550 - 1554
  • [36] Context Integrated Relational Spatio-Temporal Resource Forecasting
    Chen, Hongjie
    Rossi, Ryan A.
    Mahadik, Kanak
    Eldardiry, Hoda
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1359 - 1368
  • [37] Spatio-Temporal Attention LSTM Model for Flood Forecasting
    Ding, Yukai
    Zhu, Yuelong
    Wu, Yirui
    Feng, Jun
    Cheng, Zirun
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 458 - 465
  • [38] Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting
    Oliveira, Mariana
    Moniz, Nuno
    Torgo, Luis
    Costa, Vitor Santos
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 100 - 109
  • [39] Wind speed forecasting using spatio-temporal indicators
    Ohashi, Orlando
    Torgo, Luis
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 975 - 980
  • [40] Spatio-temporal avalanche forecasting with Support Vector Machines
    Pozdnoukhov, A.
    Matasci, G.
    Kanevski, M.
    Purves, R. S.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (02) : 367 - 382