Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Monthly stream flow forecasting via dynamic spatio-temporal models
    Majid Dehghani
    Bahram Saghafian
    Firoozeh Rivaz
    Ahmad Khodadadi
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 861 - 874
  • [32] U-Convolutional model for spatio-temporal wind speed forecasting
    Bastos, Bruno Quaresma
    Cyrino Oliveira, Fernando Luiz
    Milidiu, Ruy Luiz
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 949 - 970
  • [33] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [34] Forecasting Unobserved Node States with spatio-temporal Graph Neural Networks
    Roth, Andreas
    Liebig, Thomas
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 740 - 747
  • [35] Self explainable graph convolutional recurrent network for spatio-temporal forecasting
    Garcia-Siguenza, Javier
    Curado, Manuel
    Llorens-Largo, Faraon
    Vicent, Jose F.
    MACHINE LEARNING, 2025, 114 (01)
  • [36] A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models
    Bolt, Andrew
    Huston, Carolyn
    Petra, Kuhnert
    Dabrowski, Joel Janek
    Hilton, James
    Sanderson, Conrad
    2022 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2022, : 110 - 115
  • [37] Review of Spatio-temporal Models for Short-term Traffic Forecasting
    Chang Gang
    Wang Shouhui
    Xiao Xiaobo
    2016 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2016, : 8 - 12
  • [38] Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (02) : 538 - 546
  • [39] DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
    Qin, Yanjun
    Tao, Xiaoming
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22208 - 22219
  • [40] Spatio-temporal wind speed forecasting with approximate Bayesian uncertainty quantification
    Neto A.F.S.
    Mattos C.L.C.
    Gomes J.P.P.
    Neural Computing and Applications, 2024, 36 (28) : 17645 - 17667