Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads
    Leprince, Julien
    Madsen, Henrik
    Moller, Jan Kloppenborg
    Zeiler, Wim
    APPLIED ENERGY, 2023, 348
  • [22] Forecasting Rice Production in Luzon Using Integrated Spatio-Temporal Forecasting Framework
    Urrutia, Jackie D.
    Bedaa, Joshua Sy
    Combalicer, Chloe Bernice, V
    Mingo, Francis Leo T.
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [23] TaylorS: A Multi-Order Expansion Structure for Urban Spatio-Temporal Forecasting
    Qin, Jianyang
    Jia, Yan
    Fang, Binxing
    Liao, Qing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 3030 - 3046
  • [24] Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces
    Gandhi, Ankit
    Aakanksha
    Kaveri, Sivaramakrishnan
    Chaoji, Vineet
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 187 - 203
  • [25] Modelling Spatio-Temporal Dynamics in Multi-Output Stochastic Frontiers for the European Agribusiness Industry
    Emili, Silvia
    Galli, Federica
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2025,
  • [26] Adaptive and Interactive Multi-Level Spatio-Temporal Network for Traffic Forecasting
    Zhang, Yudong
    Wang, Pengkun
    Wang, Binwu
    Wang, Xu
    Zhao, Zhe
    Zhou, Zhengyang
    Bai, Lei
    Wang, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14070 - 14086
  • [27] Multi-modal spatio-temporal meteorological forecasting with deep neural network
    Zhang, Xinbang
    Jin, Qizhao
    Yu, Tingzhao
    Xiang, Shiming
    Kuang, Qiuming
    Prinet, Veronique
    Pan, Chunhong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 380 - 393
  • [28] Multi-Output Neural Network for the Temperature Forecasting in Semarang
    Zahrati, Z.
    Fithriasari, K.
    Irhamah
    2016 CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCE FOR ADVANCED TECHNOLOGY (CONFAST 2016), 2016, 1746
  • [29] Spatio-temporal drought forecasting within Bayesian networks
    Madadgar, Shahrbanou
    Moradkhani, Hamid
    JOURNAL OF HYDROLOGY, 2014, 512 : 134 - 146
  • [30] Spatio-temporal hierarchical MLP network for traffic forecasting
    Qin, Yanjun
    Luo, Haiyong
    Zhao, Fang
    Fang, Yuchen
    Tao, Xiaoming
    Wang, Chenxing
    INFORMATION SCIENCES, 2023, 632 : 543 - 554