Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:0
|
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spatio-Temporal Network for Sea Fog Forecasting
    Park, Jinhyeok
    Lee, Young Jae
    Jo, Yongwon
    Kim, Jaehoon
    Han, Jin Hyun
    Kim, Kuk Jin
    Kim, Young Taeg
    Kim, Seoung Bum
    SUSTAINABILITY, 2022, 14 (23)
  • [2] Spatio-Temporal Transformer Network for Weather Forecasting
    Ji, Junzhong
    He, Jing
    Lei, Minglong
    Wang, Muhua
    Tang, Wei
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 372 - 387
  • [3] Spatio-temporal model for crop yield forecasting
    Saengseedam, Panudet
    Kantanantha, Nantachai
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (03) : 427 - 440
  • [4] Spatio-temporal DeepKriging for interpolation and probabilistic forecasting
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    SPATIAL STATISTICS, 2023, 57
  • [5] Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads
    Leprince, Julien
    Madsen, Henrik
    Moller, Jan Kloppenborg
    Zeiler, Wim
    APPLIED ENERGY, 2023, 348
  • [6] MFNet: The Spatio-Temporal Network for Meteorological Forecasting With Architecture Search
    Zhang, Xinbang
    Jin, Qizhao
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Multi-modal spatio-temporal meteorological forecasting with deep neural network
    Zhang, Xinbang
    Jin, Qizhao
    Yu, Tingzhao
    Xiang, Shiming
    Kuang, Qiuming
    Prinet, Veronique
    Pan, Chunhong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 380 - 393
  • [8] TaylorS: A Multi-Order Expansion Structure for Urban Spatio-Temporal Forecasting
    Qin, Jianyang
    Jia, Yan
    Fang, Binxing
    Liao, Qing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 3030 - 3046
  • [9] Adaptive and Interactive Multi-Level Spatio-Temporal Network for Traffic Forecasting
    Zhang, Yudong
    Wang, Pengkun
    Wang, Binwu
    Wang, Xu
    Zhao, Zhe
    Zhou, Zhengyang
    Bai, Lei
    Wang, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14070 - 14086
  • [10] DeepWind: a heterogeneous spatio-temporal model for wind forecasting
    Wang, Bin
    Shi, Junrui
    Tan, Binyu
    Ma, Minbo
    Hong, Feng
    Yu, Yanwei
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 286