Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

被引:2
作者
Arias-Garzon, Daniel [1 ]
Tabares-Soto, Reinel [1 ,2 ,5 ]
Ruz, Gonzalo A. [2 ,3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Ind Automat, Manizales 170001, Colombia
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile
[3] Ctr Appl Ecol & Sustainabil CAPES, Santiago 8331150, Chile
[4] Data Observ Fdn, Santiago 7510277, Chile
[5] Univ Caldas, Dept Sistemas & Informat, Caldas 170001, Colombia
关键词
Genetic algorithm; Multi-output; Forecasting; Deep Learning;
D O I
10.1016/j.eswa.2024.125384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Spatiotemporal clustering: a review [J].
Ansari, Mohd Yousuf ;
Ahmad, Amir ;
Khan, Shehroz S. ;
Bhushan, Gopal ;
Mainuddin .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (04) :2381-2423
[2]  
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271]
[3]  
Cahuantzi Roberto, 2023, A Comparison of LSTM and GRU Networks for Learning Symbolic Sequences, P771
[4]   The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation [J].
Chicco, Davide ;
Warrens, Matthijs J. ;
Jurman, Giuseppe .
PEERJ COMPUTER SCIENCE, 2021,
[5]   Mean Absolute Percentage Error for regression models [J].
de Myttenaere, Arnaud ;
Golden, Boris ;
Le Grand, Benedicte ;
Rossi, Fabrice .
NEUROCOMPUTING, 2016, 192 :38-48
[6]   Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting [J].
Fan, Guo-Feng ;
Guo, Yan-Hui ;
Zheng, Jia-Mei ;
Hong, Wei-Chiang .
ENERGIES, 2019, 12 (05)
[7]  
Herzen Julien., 2022, Journal of Machine Learning Research, V23, P1
[8]  
Hyndman R J., 2021, J FORECASTING, V3rd, DOI [DOI 10.1002/for.2750, DOI 10.1002/FOR.2750]
[9]   DEEP SPATIO-TEMPORAL WIND POWER FORECASTING [J].
Li, Jiangyuan ;
Armandpour, Mohammadreza .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :4138-4142
[10]   Temporal Fusion Transformers for interpretable multi-horizon time series forecasting [J].
Lim, Bryan ;
Arik, Sercan O. ;
Loeff, Nicolas ;
Pfister, Tomas .
INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (04) :1748-1764