Machine Learning-Driven Dynamic Maps Supporting Wildfire Risk Management

被引:0
作者
Perello, Nicole [1 ,2 ]
Meschi, Giorgio [2 ]
Trucchia, Andrea [2 ]
D'Andrea, Mirko [2 ]
Baghino, Francesco [1 ,2 ]
degli Esposti, Silvia [2 ]
Fiorucci, Paolo [2 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via AllOpera Pia 13, I-16145 Genoa, Italy
[2] CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 02期
关键词
Wildfire; risk management; machine learning; time series classification;
D O I
10.1016/j.ifacol.2024.07.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent decades have seen an increase in wildfires activity, posing risks to human settlements, and forcing exploration of new technologies for wildfire risk management. Utilizing Machine Learning in Time Series classification, this study produces decision support maps for Civil Protection system in Italy, which is responsible for coordinating national firefighting air fleet. Trained on past events data, the model gives daily indication on wildfire occurrence and aerial support requests for each administrative unit utilizing time series of Forest Fire Danger Rating indexes from RISICO model. Despite its recent implementation, it performed properly in 2023, showcasing model's potential for decision support. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [41] Machine Learning-Driven Quantum Sequencing of Natural and Chemically Modified DNA
    Maurya, Dipti
    Mittal, Sneha
    Jena, Milan Kumar
    Pathak, Biswarup
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (14) : 20778 - 20789
  • [42] A review of machine learning applications in wildfire science and management
    Jain, Piyush
    Coogan, Sean C. P.
    Subramanian, Sriram Ganapathi
    Crowley, Mark
    Taylor, Steve
    Flannigan, Mike D.
    ENVIRONMENTAL REVIEWS, 2020, 28 (04): : 478 - 505
  • [43] Machine learning-driven design of promising perovskites for photovoltaic applications: A review
    Chen, Jinlian
    Feng, Mengjia
    Zha, Chenyang
    Shao, Cairu
    Zhang, Linghai
    Wang, Lin
    SURFACES AND INTERFACES, 2022, 35
  • [44] Machine learning-driven atomistic analysis of mechanical behavior in silicon nanowires
    Pakzad, Sina Zare
    Esfahani, Mohammad Nasr
    Canadinc, Demircan
    Alaca, B. Erdem
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246
  • [45] Machine Learning-Driven Optimization of Spent Lithium Iron Phosphate Regeneration
    Alyoubi, Mohammed
    Ali, Imtiaz
    Abdelkader, Amr M.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (08): : 3349 - 3361
  • [46] Enabling Reusable and Comparable xApps in the Machine Learning-Driven Open RAN
    Herrera, Juan Luis
    Montebugnoli, Sofia
    Bellavista, Paolo
    Foschini, Luca
    2024 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR 2024, 2024, : 37 - 42
  • [47] A Machine Learning-Driven Threat Hunting Architecture for Protecting Critical Infrastructures
    Lozano, Mario Aragones
    Llopis, Israel Perez
    Alarcon, Alfonso Climente
    Domingo, Manuel Esteve
    2023 19TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS, DRCN, 2023,
  • [48] Machine Learning-Driven Preventive Maintenance for Fibreboard Production in Industry 4.0
    Suwatcharachaitiwong, Sirirat
    Sirivongpaisal, Nikorn
    Surasak, Thattapon
    Jiteurtragool, Nattagit
    Treeranurat, Laksiri
    Teeraparbseree, Aree
    Khumprom, Phattara
    Pungchompoo, Sirirat
    Buakum, Dollaya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (03) : 942 - 950
  • [49] Machine Learning-Driven Detection of Cross-Site Scripting Attacks
    Alhamyani, Rahmah
    Alshammari, Majid
    INFORMATION, 2024, 15 (07)
  • [50] Machine Learning-Driven Ultra-Broadband Terahertz Multilayer Metamaterial
    Chouhan, Bhagwat Singh
    Nawaz, Ali
    Das, Asit
    Rohith, K. M.
    Ahmad, Amir
    Kumar, Gagan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (06) : 2734 - 2744