On the spaces dual to combinatorial Banach spaces

被引:1
作者
Borodulin-Nadzieja, Piotr [1 ]
Jachimek, Sebastian [1 ]
Pelczar-Barwacz, Anna [2 ]
机构
[1] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
[2] Jagiellonian Univ, Inst Math, Krakow, Poland
基金
奥地利科学基金会;
关键词
Banach envelope; compact families of finite sets; quasi-Banach spaces; Schreier space; Schur property; l1-saturated spaces;
D O I
10.1002/mana.202300303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present quasi-Banach spaces which are closely related to the duals of combinatorial Banach spaces. More precisely, for a compact family F of finite subsets of omega we define a quasi-norm || center dot ||(F) whose Banach envelope is the dual norm for the combinatorial space generated by F. Such quasi-norms seem to be much easier to handle than the dual norms and yet the quasi-Banach spaces induced by them share many properties with the dual spaces. We show that the quasi-Banach spaces induced by large families (in the sense of Lopez-Abad and Todorcevic) are l1-saturated and do not have the Schur property. In particular, this holds for the Schreier families
引用
收藏
页码:998 / 1017
页数:20
相关论文
共 24 条
[1]  
Alspach D. E., 1992, DISSERTATIONES MATH, V321
[2]   On the geometry of higher order Schreier spaces [J].
Antunes, Leandro ;
Beanland, Kevin ;
Chu, Hung Viet .
ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (01) :47-69
[3]   EXAMPLES OF HEREDITARILY L1 BANACH-SPACES FAILING THE SCHUR PROPERTY [J].
AZIMI, P ;
HAGLER, JN .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 122 (02) :287-297
[4]  
BESSAGA C, 1958, STUD MATH, V17, P151
[5]  
Bird A., 2010, Banach Center Publ, V91, P45
[6]   Analytic P-ideals and Banach spaces [J].
Borodulin-Nadzieja, Piotr ;
Farkas, Barnabas .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
[7]  
Bourgain J., Lecture Notes
[8]   ISOMETRIES OF COMBINATORIAL BANACH SPACES [J].
Brech, C. ;
Ferenczi, V ;
Tcaciuc, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) :4845-4854
[9]  
Castillo J. M. F., 1991, EXTRACTA MATH, V6, P166
[10]   Equivalence of block sequences in Schreier spaces and their duals [J].
Causey, R. M. ;
Pelczar-Barwacz, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (01)