Bounds on Mixing Time for Time-Inhomogeneous Markov Chains

被引:0
作者
Erb, Raphael [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2024年 / 21卷
基金
瑞士国家科学基金会;
关键词
probability theory; time-inhomogeneous markov chains; random walks; dynamic random graphs; RANDOM-WALKS;
D O I
10.30757/ALEA.v21-73
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixing of finite time-homogeneous Markov chains is well understood nowadays, with a rich set of techniques to estimate their mixing time. In this paper, we study the mixing time of random walks in dynamic random environments. To that end, we propose a concept of mixing time for time-inhomogeneous Markov chains. We then develop techniques to estimate this mixing time by extending the evolving set method of Morris and Peres (2005). We apply these techniques to study a random walk on a dynamic Erd & odblac;s-R & eacute;nyi graph, proving that our proposed definition of mixing time is O(log(n)) when the graph is well above the connectivity threshold. We also give an almost matching lower bound.
引用
收藏
页码:1915 / 1948
页数:34
相关论文
共 23 条
  • [1] Random walks on dynamic configuration models: A trichotomy
    Avena, Luca
    Guldas, Hakan
    van der Hofstad, Remco
    den Hollander, Frank
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3360 - 3375
  • [2] MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS
    Avena, Luca
    Guldas, Hakan
    van der Hofstad, Remco
    den Hollander, Frank
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (04) : 1977 - 2002
  • [3] Cover time and mixing time of random walks on dynamic graphs
    Avin, Chen
    Koucky, Michal
    Lotker, Zvi
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (04) : 576 - 596
  • [4] Bremaud P., 2013, Markov chains: Gibbs fields, Monte Carlo simulation, and queues, V31
  • [5] Random Walks on Randomly Evolving Graphs
    Cai, Leran
    Sauerwald, Thomas
    Zanetti, Luca
    [J]. STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2020, 2020, 12156 : 111 - 128
  • [6] Transience in growing subgraphs via evolving sets
    Dembo, Amir
    Huang, Ruojun
    Morris, Ben
    Peres, Yuval
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1164 - 1180
  • [7] DOBRUSHIN R. L., 1956, i. Theory of Probability and Its Applications, V1, P65, DOI DOI 10.1137/1101006
  • [8] Durrett R., 2007, Random Graph Dynamics
  • [9] A COMPARISON PRINCIPLE FOR RANDOM WALK ON DYNAMICAL PERCOLATION
    Hermon, Jonathan
    Sousi, Perla
    [J]. ANNALS OF PROBABILITY, 2020, 48 (06) : 2952 - 2987
  • [10] APPROXIMATING THE PERMANENT
    JERRUM, M
    SINCLAIR, A
    [J]. SIAM JOURNAL ON COMPUTING, 1989, 18 (06) : 1149 - 1178