Multiobjective Multitask Optimization via Diversity-and Convergence-Oriented Knowledge Transfer
被引:0
作者:
Li, Yanchi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Li, Yanchi
[1
]
Li, Dongcheng
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Polytech Univ Humboldt, Dept Comp Sci, Arcata, CA 95521 USAChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Li, Dongcheng
[2
]
Gong, Wenyin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Gong, Wenyin
[1
]
Gu, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Gu, Qiong
[3
]
机构:
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Calif State Polytech Univ Humboldt, Dept Comp Sci, Arcata, CA 95521 USA
[3] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Peoples R China
来源:
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
|
2025年
/
55卷
/
03期
基金:
中国国家自然科学基金;
关键词:
Optimization;
Convergence;
Resource management;
Multitasking;
Knowledge transfer;
Electronic mail;
Autoencoders;
Vehicle dynamics;
Space mapping;
Particle swarm optimization;
Diversity and convergence;
evolutionary multitasking;
knowledge transfer (KT);
multiobjective multitask optimization (MO-MTO);
ALGORITHM;
D O I:
10.1109/TSMC.2024.3520526
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Multiobjective multitask optimization (MO-MTO) aims to exploit the similarities among different multiobjective optimization tasks through knowledge transfer (KT), facilitating their simultaneous resolution. The effective design of KT techniques embedded in multiobjective evolutionary optimizers is crucial for enhancing the performance of multiobjective multitask evolutionary algorithms (MO-MTEAs). However, a significant limitation of existing KT techniques in MO-MTEAs is their equal treatment of particles/individuals for transferred knowledge reception, which can negatively impact the balance of diversity and convergence in population evolution. To remedy this limitation, this article proposes a new MO-MTEA, named MTEA-DCK, which incorporates diversity-oriented KT (DKT) and convergence-oriented KT (CKT) techniques tailored for different particles in the population. MTEA-DCK utilizes a strength-Pareto-based competitive mechanism to divide particles into winners and losers: 1) for winners, DKT is conducted via an intertask domain alignment approach to enhance population diversity and 2) for losers, CKT is executed within the unified search space to improve convergence. Additionally, to ensure robust performance on complex task combinations, we introduce two automatic parameter control strategies specifically designed for these KT techniques. MTEA-DCK was performed on 39 benchmark MO-MTO problems and demonstrated superior performance compared to eight state-of-the-art MO-MTEAs and six multiobjective evolutionary algorithms. Finally, we present three real-world MO-MTO application cases, where our approach also yielded better results than other algorithms.
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Chen, Yongliang
Zhong, Jinghui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Zhong, Jinghui
Feng, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Feng, Liang
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Victoria Univ, Melbourne, Vic 8001, AustraliaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Zhang, Jun
[J].
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,
2020,
4
(03):
: 369
-
384
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, SingaporeSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Chen, Zefeng
Zhou, Yuren
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Sun Yat Sen Univ, Key Lab Machine Intelligence & Adv Comp, Minist Educ, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Zhou, Yuren
He, Xiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
He, Xiaoyu
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Div Elect Engn, Ansan 15588, South KoreaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Chen, Yongliang
Zhong, Jinghui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Zhong, Jinghui
Feng, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Feng, Liang
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Victoria Univ, Melbourne, Vic 8001, AustraliaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510330, Peoples R China
Zhang, Jun
[J].
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,
2020,
4
(03):
: 369
-
384
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, SingaporeSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Chen, Zefeng
Zhou, Yuren
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Sun Yat Sen Univ, Key Lab Machine Intelligence & Adv Comp, Minist Educ, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
Zhou, Yuren
He, Xiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
He, Xiaoyu
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Div Elect Engn, Ansan 15588, South KoreaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China