System for Predicting Neurological Outcomes Following Cardiac Arrest Based on Clinical Predictors Using a Machine Learning Method: The Neurological Outcomes After Cardiac Arrest Method

被引:1
作者
Kim, Tae Jung [1 ,2 ]
Suh, Jungyo [3 ]
Park, Soo-Hyun [4 ]
Kim, Youngjoon [1 ,2 ]
Ko, Sang-Bae [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Neurol, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Crit Care Med, Seoul, South Korea
[3] Ulsan Univ, Asan Med Ctr, Dept Urol, Coll Med, Seoul, South Korea
[4] Soonchunhyang Univ, Hosp Seoul, Dept Neurol, Seoul, South Korea
关键词
Cardiac arrest; Prognosis; Prognostic study; Machine learning method; EUROPEAN RESUSCITATION COUNCIL; HEART-ASSOCIATION GUIDELINES; INTENSIVE-CARE; CARDIOPULMONARY-RESUSCITATION; LIFE-SUPPORT; FOCUSED UPDATE; PROGNOSTICATION; SOCIETY; PROGNOSIS; COMA;
D O I
10.1007/s12028-025-02222-3
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundA multimodal approach may prove effective for predicting clinical outcomes following cardiac arrest (CA). We aimed to develop a practical predictive model that incorporates clinical factors related to CA and multiple prognostic tests using machine learning methods.MethodsThe neurological outcomes after CA (NOCA) method for predicting poor outcomes were developed using data from 390 patients with CA between May 2018 and June 2023. The outcome was poor neurological outcome, defined as a Cerebral Performance Category score of 3-5 at discharge. We analyzed 31 variables describing the circumstances at CA, demographics, comorbidities, and prognostic studies. The prognostic method was developed based on an extreme gradient-boosting algorithm with threefold cross-validation and hyperparameter optimization. The performance of the predictive model was evaluated using the receiver operating characteristic curve analysis and calculating the area under the curve (AUC).ResultsOf the 390 total patients (mean age 64.2 years; 71.3% male), 235 (60.3%) experienced poor outcomes at discharge. We selected variables to predict poor neurological outcomes using least absolute shrinkage and selection operator regression. The Glasgow Coma Scale-M (best motor response), electroencephalographic features, the neurological pupil index, time from CA to return of spontaneous circulation, and brain imaging were found to be important key parameters in the NOCA score. The AUC of the NOCA method was 0.965 (95% confidence interval 0.941-0.976).ConclusionsThe NOCA score represents a simple method for predicting neurological outcomes, with good performance in patients with CA, using a machine learning analysis that incorporates widely available variables.
引用
收藏
页码:829 / 838
页数:10
相关论文
共 56 条
[41]   2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [J].
Perman, Sarah M. ;
Elmer, Jonathan ;
Maciel, Carolina B. ;
Uzendu, Anezi ;
May, Teresa ;
Mumma, Bryn E. ;
Bartos, Jason A. ;
Rodriguez, Amber J. ;
Kurz, Michael C. ;
Panchal, Ashish R. ;
Rittenberger, Jon C. .
CIRCULATION, 2024, 149 (05) :e254-e273
[42]   Cerebral Performance Category and Long-Term Prognosis Following Out-of-Hospital Cardiac Arrest [J].
Phelps, Randi ;
Dumas, Florence ;
Maynard, Charles ;
Silver, Jennifer ;
Rea, Thomas .
CRITICAL CARE MEDICINE, 2013, 41 (05) :1252-1257
[43]   Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest [J].
Rajajee, Venkatakrishna ;
Muehlschlegel, Susanne ;
Wartenberg, Katja E. ;
Alexander, Sheila A. ;
Busl, Katharina M. ;
Chou, Sherry H. Y. ;
Creutzfeldt, Claire J. ;
Fontaine, Gabriel V. ;
Fried, Herbert ;
Hocker, Sara E. ;
Hwang, David Y. ;
Kim, Keri S. ;
Madzar, Dominik ;
Mahanes, Dea ;
Mainali, Shraddha ;
Meixensberger, Juergen ;
Montellano, Felipe ;
Sakowitz, Oliver W. ;
Weimar, Christian ;
Westermaier, Thomas ;
Varelas, Panayiotis N. .
NEUROCRITICAL CARE, 2023, 38 (03) :533-563
[44]   Clinical paper Brain computed tomography after resuscitation from in-hospital cardiac arrest [J].
Ratay, Cecelia ;
Elmer, Jonathan ;
Callaway, Clifton W. ;
Flickinger, Katharyn L. ;
Coppler, Patrick J. .
RESUSCITATION, 2024, 198
[45]   Neurological Pupil Index and Pupillary Light Reflex by Pupillometry Predict Outcome Early After Cardiac Arrest [J].
Riker, Richard R. ;
Sawyer, Mary E. ;
Fischman, Victoria G. ;
May, Teresa ;
Lord, Christine ;
Eldridge, Ashley ;
Seder, David B. .
NEUROCRITICAL CARE, 2020, 32 (01) :152-161
[46]   Neurological prognostication of outcome in patients in coma after cardiac arrest [J].
Rossetti, Andrea O. ;
Rabinstein, Alejandro A. ;
Oddo, Mauro .
LANCET NEUROLOGY, 2016, 15 (06) :597-609
[47]   Prognostication after cardiac arrest [J].
Sandroni, Claudio ;
D'Arrigo, Sonia ;
Nolan, Jerry P. .
CRITICAL CARE, 2018, 22
[48]   Prognostication in comatose survivors of cardiac arrest: An advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine [J].
Sandroni, Claudio ;
Cariou, Alain ;
Cavallaro, Fabio ;
Cronberg, Tobias ;
Friberg, Hans ;
Hoedemaekers, Cornelia ;
Horn, Janneke ;
Nolan, Jerry P. ;
Rossetti, Andrea O. ;
Soar, Jasmeet .
INTENSIVE CARE MEDICINE, 2014, 40 (12) :1816-1831
[49]  
Shamout F, 2021, IEEE REV BIOMED ENG, V14, P116, DOI [10.1109/RBME.2020.3007816, 10.4018/IJIDE.2020040101]
[50]   Using Out-of-Hospital Cardiac Arrest (OHCA) and Cardiac Arrest Hospital Prognosis (CAHP) Scores with Modified Objective Data to Improve Neurological Prognostic Performance for Out-of-Hospital Cardiac Arrest Survivors [J].
Song, Hogul ;
Park, Jungsoo ;
You, Yeonho ;
Ahn, Hongjoon ;
Yoo, Insool ;
Kim, Seungwhan ;
Lee, Jinwoong ;
Ryu, Seung ;
Jeong, Wonjoon ;
Cho, Yongchul ;
Kang, Changshin .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (09)