System for Predicting Neurological Outcomes Following Cardiac Arrest Based on Clinical Predictors Using a Machine Learning Method: The Neurological Outcomes After Cardiac Arrest Method

被引:1
作者
Kim, Tae Jung [1 ,2 ]
Suh, Jungyo [3 ]
Park, Soo-Hyun [4 ]
Kim, Youngjoon [1 ,2 ]
Ko, Sang-Bae [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Neurol, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Crit Care Med, Seoul, South Korea
[3] Ulsan Univ, Asan Med Ctr, Dept Urol, Coll Med, Seoul, South Korea
[4] Soonchunhyang Univ, Hosp Seoul, Dept Neurol, Seoul, South Korea
关键词
Cardiac arrest; Prognosis; Prognostic study; Machine learning method; EUROPEAN RESUSCITATION COUNCIL; HEART-ASSOCIATION GUIDELINES; INTENSIVE-CARE; CARDIOPULMONARY-RESUSCITATION; LIFE-SUPPORT; FOCUSED UPDATE; PROGNOSTICATION; SOCIETY; PROGNOSIS; COMA;
D O I
10.1007/s12028-025-02222-3
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundA multimodal approach may prove effective for predicting clinical outcomes following cardiac arrest (CA). We aimed to develop a practical predictive model that incorporates clinical factors related to CA and multiple prognostic tests using machine learning methods.MethodsThe neurological outcomes after CA (NOCA) method for predicting poor outcomes were developed using data from 390 patients with CA between May 2018 and June 2023. The outcome was poor neurological outcome, defined as a Cerebral Performance Category score of 3-5 at discharge. We analyzed 31 variables describing the circumstances at CA, demographics, comorbidities, and prognostic studies. The prognostic method was developed based on an extreme gradient-boosting algorithm with threefold cross-validation and hyperparameter optimization. The performance of the predictive model was evaluated using the receiver operating characteristic curve analysis and calculating the area under the curve (AUC).ResultsOf the 390 total patients (mean age 64.2 years; 71.3% male), 235 (60.3%) experienced poor outcomes at discharge. We selected variables to predict poor neurological outcomes using least absolute shrinkage and selection operator regression. The Glasgow Coma Scale-M (best motor response), electroencephalographic features, the neurological pupil index, time from CA to return of spontaneous circulation, and brain imaging were found to be important key parameters in the NOCA score. The AUC of the NOCA method was 0.965 (95% confidence interval 0.941-0.976).ConclusionsThe NOCA score represents a simple method for predicting neurological outcomes, with good performance in patients with CA, using a machine learning analysis that incorporates widely available variables.
引用
收藏
页码:829 / 838
页数:10
相关论文
共 56 条
[1]   Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score [J].
Adrie, Christophe ;
Cariou, Alain ;
Mourvillier, Bruno ;
Laurent, Ivan ;
Dabbane, Hala ;
Hantala, Fatima ;
Rhaoui, Abdel ;
Thuong, Marie ;
Monchi, Mehran .
EUROPEAN HEART JOURNAL, 2006, 27 (23) :2840-2845
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]   In-hospital versus out-of-hospital cardiac arrest: Characteristics and outcomes in patients admitted to intensive care after return of spontaneous circulation [J].
Andersson, Axel ;
Arctaedius, Isabelle ;
Cronberg, Tobias ;
Levin, Helena ;
Nielsen, Niklas ;
Friberg, Hans ;
Lybeck, Anna .
RESUSCITATION, 2022, 176 :1-8
[4]   2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality An Update to the American Heart Association Guidelines for Cardio-pulmonary Resuscitation and Emergency Cardiovascular Care [J].
Atkins, Dianne L. ;
de Caen, Allan R. ;
Berger, Stuart ;
Samson, Ricardo A. ;
Schexnayder, Stephen M. ;
Joyner, Benny L., Jr. ;
Bigham, Blair L. ;
Niles, Dana E. ;
Duff, Jonathan P. ;
Hunt, Elizabeth A. ;
Meaney, Peter A. .
CIRCULATION, 2018, 137 (01) :E1-E6
[5]   External validation of the PROLOGUE score to predict neurological outcome in adult patients after cardiac arrest: a prospective cohort study [J].
Blatter, Rene ;
Gokduman, Bulus ;
Amacher, Simon A. ;
Becker, Christoph ;
Beck, Katharina ;
Gross, Sebastian ;
Tisljar, Kai ;
Sutter, Raoul ;
Pargger, Hans ;
Marsch, Stephan ;
Hunziker, Sabina .
SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2023, 31 (01)
[6]   Comparison of different clinical risk scores to predict long-term survival and neurological outcome in adults after cardiac arrest: results from a prospective cohort study [J].
Blatter, Rene ;
Amacher, Simon A. ;
Bohren, Chantal ;
Becker, Christoph ;
Beck, Katharina ;
Gross, Sebastian ;
Tisljar, Kai ;
Sutter, Raoul ;
Marsch, Stephan ;
Hunziker, Sabina .
ANNALS OF INTENSIVE CARE, 2022, 12 (01)
[7]   RETRACTED: Post-cardiac arrest brain injury: Pathophysiology and treatment (Retracted article. See vol. 4, 2016) [J].
Chalkias, Athanasios ;
Xanthos, Theodoros .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2012, 315 (1-2) :1-8
[8]   Explaining a series of models by propagating Shapley values [J].
Chen, Hugh ;
Lundberg, Scott M. ;
Lee, Su-In .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest [J].
Dankiewicz, Josef ;
Cronberg, Tobias ;
Lilja, Gisela ;
Jakobsen, Janus C. ;
Levin, Helena ;
Ullen, Susann ;
Rylander, Christian ;
Wise, Matt P. ;
Oddo, Mauro ;
Cariou, Alain ;
Belohlavek, Jan ;
Hovdenes, Jan ;
Saxena, Manoj ;
Kirkegaard, Hans ;
Young, Paul J. ;
Pelosi, Paolo ;
Storm, Christian ;
Taccone, Fabio S. ;
Joannidis, Michael ;
Callaway, Clifton ;
Eastwood, Glenn M. ;
Morgan, Matt P. G. ;
Nordberg, Per ;
Erlinge, David ;
Nichol, Alistair D. ;
Chew, Michelle S. ;
Hollenberg, Jacob ;
Thomas, Matthew ;
Bewley, Jeremy ;
Sweet, Katie ;
Grejs, Anders M. ;
Christensen, Steffen ;
Haenggi, Matthias ;
Levis, Anja ;
Lundin, Andreas ;
During, Joachim ;
Schmidbauer, Simon ;
Keeble, Thomas R. ;
Karamasis, Grigoris V. ;
Schrag, Claudia ;
Faessler, Edith ;
Smid, Ondrej ;
Otahal, Michal ;
Maggiorini, Marco ;
Wendel Garcia, Pedro D. ;
Jaubert, Paul ;
Cole, Jade M. ;
Solar, Miroslav ;
Borgquist, Ola ;
Leithner, Christoph .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (24) :2283-2294