Semiregularity as a consequence of Goodwillie's theorem

被引:0
作者
Pridham, J. P. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
[2] Univ Edinburgh, Maxwell Inst, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
基金
英国工程与自然科学研究理事会;
关键词
CYCLIC HOMOLOGY; K-THEORY; OBSTRUCTIONS;
D O I
10.1017/fms.2024.132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We realise Buchweitz and Flenner's semiregularity map (and hence a fortiori Bloch's semiregularity map) for a smooth variety X as the tangent of a generalised Abel-Jacobi map on the derived moduli stack of perfect complexes on X. The target of this map is an analogue of Deligne cohomology defined in terms of cyclic homology, and Goodwillie's theorem on nilpotent ideals ensures that it has the desired tangent space (a truncated de Rham complex).Immediate consequences are the semiregularity conjectures: that the semiregularity maps annihilate all obstructions, and that if X is deformed, semiregularity measures the failure of the Chern character to remain a Hodge class. This gives rise to reduced obstruction theories of the type featuring in the study of reduced Gromov-Witten and Pandharipande-Thomas invariants. We also give generalisations allowing X to be singular, and even a derived stack.
引用
收藏
页数:22
相关论文
共 41 条
[1]  
Bandiera R, 2023, Arxiv, DOI arXiv:2111.12985
[2]  
Bhatt B, 2012, Arxiv, DOI arXiv:1207.6193
[3]   SEMI-REGULARITY AND DE RHAM COHOMOLOGY [J].
BLOCH, S .
INVENTIONES MATHEMATICAE, 1972, 17 (01) :51-&
[4]  
Bressler P., 1997, PREPRINT
[5]   The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah-Chern character [J].
Buchweitz, Ragnar-Olaf ;
Flenner, Hubert .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :243-281
[6]   A semiregularity map for modules and applications to deformations [J].
Buchweitz, RO ;
Flenner, H .
COMPOSITIO MATHEMATICA, 2003, 137 (02) :135-210
[7]   Derived quot schemes [J].
Ciocan-Fontanine, I ;
Kapranov, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (03) :403-440
[8]  
Deligne P., 1968, Inst. Hautes Etudes Sci. Publ. Math, P259, DOI [10.1007/BF02698925, DOI 10.1007/BF02698925]
[9]   DG quotients of DG categories [J].
Drinfeld, V .
JOURNAL OF ALGEBRA, 2004, 272 (02) :643-691
[10]   THE CYCLIC HOMOLOGY OF AFFINE ALGEBRAS [J].
EMMANOUIL, I .
INVENTIONES MATHEMATICAE, 1995, 121 (01) :1-19