State of health estimation of lithium-ion batteries based on feature optimization and data-driven models

被引:0
|
作者
Mu, Guixiang [1 ]
Wei, Qingguo [1 ]
Xu, Yonghong [2 ]
Li, Jian [3 ]
Zhang, Hongguang [4 ]
Yang, Fubin [4 ]
Zhang, Jian [5 ]
Li, Qi [1 ]
机构
[1] North Univ China, Sch Energy & Power Engn, Taiyuan 030051, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Mech Elect Engn Sch, Beijing 100192, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[4] Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, MOE,Fac Environm & Life, Beijing 100124, Peoples R China
[5] Univ Wisconsin Green Bay, Richard J Resch Sch Engn, Mech Engn, Green Bay, WI 54311 USA
基金
北京市自然科学基金;
关键词
Lithium-ion battery; State of health estimation; Feature optimization; Data-driven models; Principal component analysis; Gaussian process regression;
D O I
10.1016/j.energy.2025.134578
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the widespread application of lithium-ion batteries in electric vehicles, accurately estimating their state of health (SOH) has become a key focus of research. This paper explores various feature optimization methods and data-driven models with different structures, and constructs various SOH estimation models suitable for lithiumion batteries. Based on battery testing data, multiple features are extracted from voltage and temperature to characterize the battery aging process. To reduce information redundancy among features, filtering methods, Principal Component Analysis (PCA), and Multi-dimensional Scaling (MDS) are applied for optimization, aiming to maximize feature information utilization. This paper compares four common and structurally different datadriven models: linear regression (LR), Gaussian process regression (GPR), support vector regression (SVR), and long short-term memory (LSTM) networks. The effectiveness of each model is validated using multi-feature inputs, and a multi-dimensional assessment of feature selection and data-driven model performance in SOH estimation is conducted, the average absolute error of all models under 60 % training set conditions is 0.8 %. The average absolute error of estimating the four batteries using the fused PCA features as input and the GPR model is less than 1.2 %. At the same time, using the optimized features as input reduces the average training time by 46.63 % compared to using multiple features as input. In summary, the combination of PCA features and GPR models has good performance in both estimation accuracy and computational efficiency for different batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Data-Driven State of Health Estimation for Lithium-Ion Batteries Based on Universal Feature Selection
    Li, Yimeng
    Huang, Pingyuan
    Gao, Li Ting
    Zhao, Chunwang
    Guo, Zhan-Sheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (04)
  • [2] State of Health Estimation of Lithium-ion Batteries Based on Data-Driven Techniques
    El-Dalahmeh, Ma'd
    Lillystone, Joseph
    Al-Greer, Maher
    El-Dalahmeh, Mo'ath
    2021 56TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC 2021): POWERING NET ZERO EMISSIONS, 2021,
  • [3] Review on progress of data-driven based health state estimation for lithium-ion batteries
    Jin S.
    Dong J.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (03): : 45 - 59
  • [4] A hybrid data-driven approach for state of health estimation in lithium-ion batteries
    Ding, Can
    Guo, Qing
    Zhang, Lulu
    Wang, Tao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 67 - 83
  • [5] The state of health estimation of lithium-ion batteries based on data-driven and model fusion method
    Huang, Peng
    Gu, Pingwei
    Kang, Yongzhe
    Zhang, Ying
    Duan, Bin
    Zhang, Chenghui
    JOURNAL OF CLEANER PRODUCTION, 2022, 366
  • [6] Data-Driven Transfer-Stacking-Based State of Health Estimation for Lithium-Ion Batteries
    Wu, Ji
    Cui, Xuchen
    Meng, Jinhao
    Peng, Jichang
    Lin, Mingqiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (01) : 604 - 614
  • [7] State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Xu, Changcheng
    Wu, Xiaobo
    Kong, Huifang
    Ge, Suoliang
    Huang, Jie
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [8] A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction
    Guo, Peiyao
    Cheng, Ze
    Yang, Lei
    JOURNAL OF POWER SOURCES, 2019, 412 : 442 - 450
  • [9] Data-Driven State of Health Interval Prediction for Lithium-Ion Batteries
    Song, Ziyao
    Zhang, Han
    Jia, Jianfang
    ELECTRONICS, 2024, 13 (20)
  • [10] Data-Driven State of Health Estimation Method of Lithium-ion Batteries for Partial Charging Curves
    Tang, Jinrui
    Li, Yang
    Wang, Shaojin
    Xiong, Binyu
    Li, Xiangjun
    Pan, Jinxuan
    Chen, Qihong
    Wang, Peng
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (04) : 2230 - 2243