Biofabrication approaches to fabricating gradients and interfaces in osteochondral tissue engineering

被引:2
作者
Jalandhra, Gagan K. [1 ,2 ,3 ]
Kilian, Kristopher A. [1 ,3 ]
机构
[1] UNSW Sydney, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Sch Chem, Sydney, NSW 2052, Australia
[3] UNSW Sydney, Australian Ctr Nanomed, Sydney, NSW 2052, Australia
关键词
Osteochondral; 3D bioprinting; Biofabrication; Interface; Tissue engineering; MESENCHYMAL STEM-CELLS; HUMAN KNEE; TOP-STEREOLITHOGRAPHY; CARTILAGE REPAIR; SCAFFOLD; BONE; REGENERATION; HYDROGEL; COLLAGEN; DEFECTS;
D O I
10.1016/j.cobme.2024.100544
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Osteochondral tissue represents a complex biochemical and biophysical gradient between two distinctly different types of tissue. Its poor regeneration capabilities necessitate tissue engineering intervention; however, its complex structure and composition pose an immense engineering challenge. Though bone and cartilage engineering separately have seen success, fabricating the graded interface between these two dissimilar tissue types requires understanding and collaboration between multiple often-disunited disciplines. This review showcases innovative tissue engineering strategies utilised for fabrication of osteochondral interfaces in an attempt to bridge this gap, and highlights the potential of biofabrication techniques - namely 3D bioprinting - in providing a path towards future advancement in osteochondral and interfacial tissue engineering.
引用
收藏
页数:10
相关论文
共 96 条
[1]   Three-dimensional dynamic behaviour of the human knee joint under impact loading [J].
Abdel-Rahman, EM ;
Hefzy, MS .
MEDICAL ENGINEERING & PHYSICS, 1998, 20 (04) :276-290
[2]   Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue [J].
Adib, A. Asghari ;
Sheikhi, A. ;
Shahhosseini, M. ;
Simeunovic, A. ;
Wu, S. ;
Castro, C. E. ;
Zhao, R. ;
Khademhosseini, A. ;
Hoelzle, D. J. .
BIOFABRICATION, 2020, 12 (04)
[3]   Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink [J].
Ahlfeld, Tilman ;
Doberenz, Falko ;
Kilian, David ;
Vater, Corina ;
Korn, Paula ;
Lauer, Guenter ;
Lode, Anja ;
Gelinsky, Michael .
BIOFABRICATION, 2018, 10 (04)
[4]  
Ahmed A, 1992, The load-bearing role of the knee menisci: Knee meniscus. basic and clinical foundations
[5]   Chondral and osteochondral operative treatment in early osteoarthritis [J].
Angele, Peter ;
Niemeyer, Philipp ;
Steinwachs, Matthias ;
Filardo, Giuseppe ;
Gomoll, Andreas H. ;
Kon, Elizaveta ;
Zellner, Johannes ;
Madry, Henning .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2016, 24 (06) :1743-1752
[6]   Nanocomposite hydrogels for cartilage tissue engineering: a review [J].
Asadi, Nahideh ;
Alizadeh, Effat ;
Salehi, Roya ;
Khalandi, Bahar ;
Davaran, Soodabeh ;
Akbarzadeh, Abolfazl .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 (03) :465-471
[7]   Impact responses of the flexed human knee using a deformable impact interface [J].
Atkinson, PJ ;
Haut, DC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2001, 123 (03) :205-211
[8]   Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability [J].
Baek, Jong Seon ;
Carlomagno, Cristiano ;
Muthukumar, Thangavelu ;
Kim, David ;
Park, Jong Ho ;
Song, Jeong Eun ;
Migliaresi, Claudio ;
Motta, Antonella ;
Reis, Rui L. ;
Khang, Gilson .
MACROMOLECULAR RESEARCH, 2019, 27 (06) :558-564
[9]   Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting [J].
Bedell, Matthew L. ;
Torres, Angelica L. ;
Hogan, Katie J. ;
Wang, Ziwen ;
Wang, Bonnie ;
Melchiorri, Anthony J. ;
Grande-Allen, K. Jane ;
Mikos, Antonios G. .
BIOFABRICATION, 2022, 14 (04)
[10]   3D T cell motility in jammed microgels [J].
Bhattacharjee, Tapomoy ;
Angelini, Thomas E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (02)