Highly Coherent Room-temperature Molecular Polariton Condensates

被引:0
作者
Choi, Daegwang [1 ]
Zachariah, Serena [1 ]
Yadav, Ravindra Kumar [1 ,2 ]
Menon, Vinod. M. [1 ]
机构
[1] CUNY City Coll, Dept Phys, 85 St Nicholas Terrace, New York, NY 10031 USA
[2] Indian Inst Technol Mandi, Sch Phys Sci, Mandi 175005, Himachal Prades, India
关键词
exciton-polariton; light-matter interaction; microcavity; organic dye; polariton lasing; BOSE-EINSTEIN CONDENSATION;
D O I
10.1002/adom.202500086
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A growing number of organic materials have recently been reported to achieve room-temperature exciton-polariton (polariton) condensation, which is an essential requirement for practical polaritonic applications. Notably, fluorescent dyes utilizing the small-molecule, ionic isolation lattice (SMILES) method have solved the long-standing challenges of conventional organic dyes and have been successfully implemented in cavities to realize condensation. However, almost all demonstrations of molecular polariton condensates have inherently large spectral linewidth and poor temporal coherence arising from intrinsic disorder and low quality (Q) factor of the cavity. Here, exciton-polaritons are realised using fluorescent dye SMILES in a high Q factor microcavity and we observe polariton condensates with a linewidth of 175 mu eV. These polariton condensates exhibit temporal coherence of 30.3 +/- 8.0 ps, indicating the highly coherent nature of the narrow linewidth condensates. These results set the stage for realizing highly coherent and robust polaritonic devices operating at room temperature.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Transferrable dielectric DBR membranes for versatile GaN-based polariton and VCSEL technology [J].
Amargianitakis, E. A. ;
Kazazis, S. A. ;
Doundoulakis, G. ;
Stavrinidis, G. ;
Konstantinidis, G. ;
Delamadeleine, E. ;
Monroy, E. ;
Pelekanos, N. T. .
MICROELECTRONIC ENGINEERING, 2020, 228
[2]  
Askitopoulos A., 2019, ARXIV, DOI DOI 10.48550/ARXIV.1911.08981
[3]  
Baranikov D., 2021, NATURE, V597, P493
[4]  
Benson C.R., 1978, Chem, V6
[5]   Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons [J].
Betzold, Simon ;
Dusel, Marco ;
Kyriienko, Oleksandr ;
Dietrich, Christof P. ;
Klembt, Sebastian ;
Ohmer, Juergen ;
Fischer, Utz ;
Shelykh, Ivan A. ;
Schneider, Christian ;
Hoefling, Sven .
ACS PHOTONICS, 2020, 7 (02) :384-+
[6]   Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities [J].
Bulovic, V ;
Kozlov, VG ;
Khalfin, VB ;
Forrest, SR .
SCIENCE, 1998, 279 (5350) :553-555
[7]   Recent advances in solid-state organic lasers [J].
Chenais, Sebastien ;
Forget, Sebastien .
POLYMER INTERNATIONAL, 2012, 61 (03) :390-406
[8]   Mechanism of Molecular Polariton Decoherence in the Collective Light-Matter Couplings Regime [J].
Chng, Benjamin X. K. ;
Ying, Wenxiang ;
Lai, Yifan ;
Vamivakas, A. Nickolas ;
Cundiff, Steven T. ;
Krauss, Todd D. ;
Huo, Pengfei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (47) :11773-11783
[9]   Spatial Coherence and Stability in a Disordered Organic Polariton Condensate [J].
Daskalakis, K. S. ;
Maier, S. A. ;
Kena-Cohen, S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (03)
[10]   Polariton lasing vs. photon lasing in a semiconductor microcavity [J].
Deng, H ;
Weihs, G ;
Snoke, D ;
Bloch, J ;
Yamamoto, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15318-15323