STEFT: Spatio-Temporal Embedding Fusion Transformer for Traffic Prediction

被引:1
|
作者
Cui, Xiandai [1 ,2 ]
Lv, Hui [1 ,2 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Hubei Univ Technol, Sch Chip Ind, Wuhan 430068, Peoples R China
关键词
traffic prediction; transformer; multi-head attention; VOLUME;
D O I
10.3390/electronics13193816
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate traffic prediction is crucial for optimizing taxi demand, managing traffic flow, and planning public transportation routes. Traditional models often fail to capture complex spatial-temporal dependencies. To tackle this, we introduce the Spatio-Temporal Embedding Fusion Transformer (STEFT). This deep learning model leverages attention mechanisms and feature fusion to effectively model dynamic dependencies in traffic data. STEFT includes an Embedding Fusion Network that integrates spatial, temporal, and flow embeddings, preserving original flow information. The Flow Block uses an enhanced Transformer encoder to capture periodic dependencies within neighboring regions, while the Prediction Block forecasts inflow and outflow dynamics using a fully connected network. Experiments on NYC (New York City) Taxi and NYC Bike datasets show STEFT's superior performance over baseline methods in RMSE and MAPE metrics, highlighting the effectiveness of the concatenation-based feature fusion approach. Ablation studies confirm the contribution of each component, underscoring STEFT's potential for real-world traffic prediction and other spatial-temporal challenges.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction
    Meng, Xiangfu
    Bai, Yanbo
    Li, Minghao
    Cai, Ziang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14880 : 146 - 157
  • [2] Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting
    Liu, Hangchen
    Dong, Zheng
    Jiang, Renhe
    Deng, Jiewen
    Deng, Jinliang
    Chen, Quanjun
    Song, Xuan
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4125 - 4129
  • [3] Adaptive Spatio-Temporal Relation Based Transformer for Traffic Flow Prediction
    Wang, Ruidong
    Xi, Liang
    Ye, Jinlin
    Zhang, Fengbin
    Yu, Xu
    Xu, Lingwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2220 - 2230
  • [4] Vehicle trajectory prediction based on spatio-temporal Transformer feature fusion
    Zhao, Wenhong
    Wang, Wei
    Wan, Zilu
    Tongxin Xuebao/Journal on Communications, 2024, 45 (11): : 267 - 276
  • [5] STFEformer: Spatial-Temporal Fusion Embedding Transformer for Traffic Flow Prediction
    Yang, Hanqing
    Wei, Sen
    Wang, Yuanqing
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [6] Transformer-Based Spatio-Temporal Traffic Prediction for Access and Metro Networks
    Wang, Fu
    Xin, Xiangjun
    Lei, Zhewei
    Zhang, Qi
    Yao, Haipeng
    Wang, Xiaolong
    Tian, Qinghua
    Tian, Feng
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (15) : 5204 - 5213
  • [7] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [8] A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction
    Zhou, Bodong
    Liu, Jiahui
    Cui, Songyi
    Zhao, Yaping
    BIG DATA MINING AND ANALYTICS, 2024, 7 (03): : 621 - 636
  • [9] ST-TAP: A Traffic Accident Prediction Framework Based on Spatio-Temporal Transformer
    Liu, Weitao
    Liu, Xuanyi
    Feng, Hui
    Wang, Yiran
    Guan, Lintao
    Xu, Weifeng
    Shen, Guojiang
    Liu, Zhi
    Kong, Xiangjie
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 360 - 365
  • [10] MFDGCN: Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Network for Traffic Prediction
    Cui, Zhengyan
    Zhang, Junjun
    Noh, Giseop
    Park, Hyun Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (05):