Evaluating the Performance of Satellite-Derived Soil Moisture Products Across South America Using Minimal Ground-Truth Assumptions in Spatiotemporal Statistical Analysis

被引:0
作者
Mousa, B. G. [1 ,2 ]
Samat, Alim [1 ,3 ,4 ]
Shu, Hong [5 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Ecol Safety & Sustainable Dev Arid L, Urumqi 830011, Peoples R China
[2] Al Azhar Univ, Fac Engn, Dept Min & Petr Engn, Cairo 11884, Egypt
[3] Al Farabi Kazakh Natl Univ, China Kazakhstan Joint Lab RS Technol & Applicat, Alma Ata 050012, Kazakhstan
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; soil moisture; triple collocation; South America (SA); environmental variables; IN-SITU; ASCAT; SMAP; VALIDATION; REANALYSIS; SMOS; MULTISATELLITE; RETRIEVALS; ANOMALIES; INDEX;
D O I
10.3390/rs17050753
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
South America (SA) features diverse land cover types and varied climate conditions, both of which significantly influence the variability of soil moisture (SMO). Obtaining ground-truth measurements for SMO is often costly and labor-intensive, and the limited number of ground SMO stations in SA further complicates the evaluation of satellite-derived SMO products. In this work, we proposed an approach that integrates some statistical methods to assess the reliability of Soil Moisture Active Passive (SMAP), the H113 dataset from the Advanced Scatterometer (ASCAT), and Soil Moisture and Ocean Salinity (SMOS) satellite-derived SMO products in SA from 14 May 2015 to 31 December 2016. The integrated methods are error metrics (correlation (R), bias, and ubiased root mean square error (ubRMSE)), Triple Collocation Method (TCM), and Hovm & ouml;ller diagrams. ERA5 and GLDAS-Noah SM products were used as references for validation. The quality of SMO products was assessed by considering environmental variables, including land cover, vegetation density, and precipitation, within the different climate zones of SA. The results presented that SMAP overall outperforms SMOS and ASCAT, with the highest average correlation (0.55 with GLDAS and 0.61 with ERA5), slight average bias (-0.058 with GLDAS and -0.014 with ERA5), and lowest average ubRMSE (0.045 with GLDAS and 0.041 with ERA5). In arid, semi-arid, and moderate vegetation regions, the SMAP satellite outperforms SMOS and ASCAT, achieving better statistics values with GLDAS and ERA5 datasets, and achieving low error variance and high S/N in the TCM analysis. While the ASCAT H113 product showed good performance, which makes it a good alternative to SMAP, it still has limitations in more dense vegetation regions. SMOS showed the lowest performance across SA, especially in the Amazon basin. The Amazon basin emerges as a critical region where all SMO products displayed a significant SMO variability; however, SMAP showed slightly better results than ASCAT and SMOS. In the absence of ground truths, the proposed approach provides a better evaluation of satellite SMO products. Meanwhile, it provides new spatiotemporal statistical insights into satellite SMO retrieval performance evaluation within diverse climate zones of SA. This research provides valuable guidance for improving SMO monitoring and agricultural management in tropical and semi-arid ecosystems.
引用
收藏
页数:22
相关论文
共 76 条
[1]   Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Dorigo, W. ;
Colliander, A. ;
Pellarin, T. ;
Hahn, S. ;
Mialon, A. ;
Richaume, P. ;
Fernandez-Moran, R. ;
Fan, L. ;
Kerr, Y. H. ;
De Lannoy, G. .
REMOTE SENSING OF ENVIRONMENT, 2019, 224 :289-303
[2]   Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Kerr, Y. ;
Rodriguez-Fernandez, N. ;
O'Neill, P. E. ;
Jackson, T. J. ;
De Lannoy, G. J. M. ;
Al Bitar, A. ;
Mialon, A. ;
Richaume, P. ;
Walker, J. P. ;
Mahmoodi, A. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 193 :257-273
[3]   An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France [J].
Albergel, C. ;
Ruediger, C. ;
Carrer, D. ;
Calvet, J. -C. ;
Fritz, N. ;
Naeimi, V. ;
Bartalis, Z. ;
Hasenauer, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (02) :115-124
[4]   ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? [J].
Albergel, Clement ;
Dutra, Emanuel ;
Munier, Simon ;
Calvet, Jean-Christophe ;
Munoz-Sabater, Joaquin ;
de Rosnay, Patricia ;
Balsamo, Gianpaolo .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (06) :3515-3532
[5]   Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations [J].
Albergel, Clement ;
de Rosnay, Patricia ;
Gruhier, Claire ;
Munoz-Sabater, Joaquin ;
Hasenauer, Stefan ;
Isaksen, Lars ;
Kerr, Yann ;
Wagner, Wolfgang .
REMOTE SENSING OF ENVIRONMENT, 2012, 118 :215-226
[6]   Evaluation of GLDAS soil moisture seasonality in arid climates [J].
Araki, Ryoko ;
Mu, Ye ;
McMillan, Hilary .
HYDROLOGICAL SCIENCES JOURNAL, 2023, 68 (08) :1109-1126
[7]   An Assessment of Land-Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models [J].
Baker, Jessica C. A. ;
de Souza, Dayana Castilho ;
Kubota, Paulo Y. ;
Buermann, Wolfgang ;
Coelho, Caio A. S. ;
Andrews, Martin B. ;
Gloor, Manuel ;
Garcia-Carreras, Luis ;
Figueroa, Silvio N. ;
Spracklen, Dominick, V .
JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (04) :905-922
[8]   High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections [J].
Beck, Hylke E. ;
Mcvicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Lutsko, Nicholas J. ;
Dufour, Ambroise ;
Zeng, Zhenzhong ;
Jiang, Xin ;
van Dijk, Albert I. J. M. ;
Miralles, Diego G. .
SCIENTIFIC DATA, 2023, 10 (01)
[9]   Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors [J].
Beck, Hylke E. ;
Pan, Ming ;
Miralles, Diego G. ;
Reichle, Rolf H. ;
Dorigo, Wouter A. ;
Hahn, Sebastian ;
Sheffield, Justin ;
Karthikeyan, Lanka ;
Balsamo, Gianpaolo ;
Parinussa, Robert M. ;
van Dijk, Albert I. J. M. ;
Du, Jinyang ;
Kimball, John S. ;
Vergopolan, Noemi ;
Wood, Eric F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (01) :17-40
[10]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408