Primeness of generalized wreath product II1 factors

被引:0
作者
Patchell, Gregory [1 ]
机构
[1] Univ Calif San Diego, Dept Math Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Von Neumann algebras; II1; factors; Functional analysis; Operator algebras; Primeness; Generalized Bernoulli actions; Deformation/rigidity; VON-NEUMANN-ALGEBRAS; MALLEABLE ACTIONS; STRONG RIGIDITY; CLASSIFICATION; SUPERRIGIDITY; COMPUTATIONS; SUBALGEBRAS;
D O I
10.1007/s00209-024-03666-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we investigate the primeness of generalized wreath product II(1 )factors using deformation/rigidity theory techniques. We give general conditions relating tensor decompositions of generalized wreath products to stabilizers of the associated group action and use this to find new examples of prime II(1 )factors.
引用
收藏
页数:23
相关论文
共 31 条
[1]  
Anantharaman C., 2017, Preprint, V8
[2]   NOTION OF AMENABILITY FOR AN ACTION OF A LOCALLY COMPACT GROUP ON A VONNEUMANN ALGEBRA [J].
ANANTHARAMANDELAROCHE, C .
MATHEMATICA SCANDINAVICA, 1979, 45 (02) :289-304
[3]   Full Factors and Co-amenable Inclusions [J].
Bannon, Jon ;
Marrakchi, Amine ;
Ozawa, Narutaka .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) :1107-1121
[4]   W*-superrigidity for group von Neumann algebras of left-right wreath products [J].
Berbec, Mihaita ;
Vaes, Stefaan .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :1116-1152
[5]   ERGODIC SUBEQUIVALENCE RELATIONS INDUCED BY A BERNOULLI ACTION [J].
Chifan, Ionut ;
Ioana, Adrian .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :53-67
[6]   CLASSIFICATION OF INJECTIVE FACTORS - CASES II1, II INFINITY, III LAMBDA, LAMBDA NOT-EQUAL-TO 1 [J].
CONNES, A .
ANNALS OF MATHEMATICS, 1976, 104 (01) :73-115
[7]  
Connes A., 1974, J FUNCT ANAL, V16, P415
[8]  
Donvil M, 2025, Arxiv, DOI arXiv:2401.06053
[9]   Prime II1 factors arising from irreducible lattices in products of rank one simple Lie groups [J].
Drimbe, Daniel ;
Hoff, Daniel ;
Ioana, Adrian .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 :197-246
[10]   Model theory of operator algebras III: elementary equivalence and II1 factors [J].
Farah, Ilijas ;
Hart, Bradd ;
Sherman, David .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :609-628