Bloom-forming algae present a unique challenge to water managers as they can significantly impair provision of important ecosystem services and cause health risks to humans and animals. Consequently, effective short-term algae forecasts are important as they provide early warnings and enable implementation of mitigation strategies. In this context, machine learning (ML) emerges as a promising forecasting tool. However, the performance of ML models is heavily dependent on the availability of appropriate training data. Consequently, it is essential to determine the volume of data necessary to develop reliable ML forecasts. Understanding this will guide future monitoring strategies, optimize resource allocation, and set realistic expectations for management outcomes. In this study, we used 30 years of fortnightly measurements of 13 different parameters from a lake in the English Lake District (UK) to examine the impact of training data duration on the performance of ML models for forecasting chlorophyll-a two weeks in advance. Once training data availability exceeded four years, a Random Forest model was found to consistently outperform naive benchmarks (mean absolute percentage error 16.4 % lower than the best-performing benchmark). With more than 5 years of training data, model performance generally continued to improve, but with diminishing returns. Furthermore, it was found that equivalent and, in some cases, better performance could be achieved by only using a subset of the most important input features. Additionally, it was found that reducing the sampling frequency had negative impacts on performance, both due to the reduced number of training observations available, and increased forecast horizon. Our findings demonstrate that for lakes ecologically similar to the study site, a consistent and regular sampling programme focused on monitoring a limited number of key parameters can provide sufficient observations for generating short-term algae forecasts after approximately five years of data collection. Importantly, this result provides justification for the initiation of new monitoring programmes for sites where algal blooms are a concern, and suggests that there are likely many pre-existing monitoring datasets which would be suitable for training algae forecast models.
引用
收藏
页数:13
相关论文
共 110 条
[1]
Aaboud M, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2019)088
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Bertani, Isabella
Steger, Cara E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Colorado State Univ, Nat Resource Ecol Lab, Grad Degree Program Ecol, Campus Delivery A245, Ft Collins, CO 80523 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Steger, Cara E.
Obenour, Daniel R.
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Civil Construct & Environm Engn, Campus Box 7908, Raleigh, NC 27695 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Obenour, Daniel R.
Fahnenstiel, Gary L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Michigan Technol Univ, Great Lakes Res Ctr, 1400 Townsend Dr, Houghton, MI 49931 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Fahnenstiel, Gary L.
Bridgeman, Thomas B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toledo, Dept Environm Sci, 6200 Bayshore Dr, Oregon, OH 43616 USA
Univ Toledo, Lake Erie Ctr, 6200 Bayshore Dr, Oregon, OH 43616 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Bridgeman, Thomas B.
Johengen, Thomas H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, 4840 South State St, Ann Arbor, MI 48108 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Johengen, Thomas H.
Sayers, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Michigan Tech Res Inst, 3600 Green Ct,Suite 100, Ann Arbor, MI 48105 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Sayers, Michael J.
Shuchman, Robert A.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Michigan Tech Res Inst, 3600 Green Ct,Suite 100, Ann Arbor, MI 48105 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Shuchman, Robert A.
Scavia, Donald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Bertani, Isabella
Steger, Cara E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Colorado State Univ, Nat Resource Ecol Lab, Grad Degree Program Ecol, Campus Delivery A245, Ft Collins, CO 80523 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Steger, Cara E.
Obenour, Daniel R.
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Civil Construct & Environm Engn, Campus Box 7908, Raleigh, NC 27695 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Obenour, Daniel R.
Fahnenstiel, Gary L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Michigan Technol Univ, Great Lakes Res Ctr, 1400 Townsend Dr, Houghton, MI 49931 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Fahnenstiel, Gary L.
Bridgeman, Thomas B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toledo, Dept Environm Sci, 6200 Bayshore Dr, Oregon, OH 43616 USA
Univ Toledo, Lake Erie Ctr, 6200 Bayshore Dr, Oregon, OH 43616 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Bridgeman, Thomas B.
Johengen, Thomas H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, 4840 South State St, Ann Arbor, MI 48108 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Johengen, Thomas H.
Sayers, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Michigan Tech Res Inst, 3600 Green Ct,Suite 100, Ann Arbor, MI 48105 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Sayers, Michael J.
Shuchman, Robert A.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Michigan Tech Res Inst, 3600 Green Ct,Suite 100, Ann Arbor, MI 48105 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
Shuchman, Robert A.
Scavia, Donald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USAUniv Michigan, Graham Sustainabil Inst, Water Ctr, 625 E Liberty St,Suite 300, Ann Arbor, MI 48104 USA
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay
机构:
Univ Fed Rio de Janeiro, Dept Bot, Museu Nacl, BR-20940040 Rio De Janeiro, BrazilUniv Republica, Fac Ciencias, Secc Limnol, Phytoplankton Physiol & Ecol Grp, Montevideo 11400, Uruguay