Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI

被引:0
作者
Ali, Redha [1 ,2 ]
Li, Hailong [1 ,2 ,3 ,4 ]
Zhang, Huixian [1 ,2 ]
Pan, Wen [1 ,2 ]
Reeder, Scott B. [5 ,6 ]
Harris, David [5 ]
Masch, William [7 ]
Aslam, Anum [7 ]
Shanbhogue, Krishna [8 ]
Bernieh, Anas [9 ]
Ranganathan, Sarangarajan [9 ]
Parikh, Nehal [3 ,10 ]
Dillman, Jonathan R. [1 ,2 ,4 ]
He, Lili [1 ,2 ,3 ,4 ,11 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Imaging Res Ctr, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp, Med Ctr, Dept Radiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Perinatal Inst, Neurodev Disorders Prevent Ctr, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Artificial Intelligence Imaging Res Ctr, Cincinnati, OH 45229 USA
[5] Univ Wisconsin, Dept Radiol, Madison, WI USA
[6] Univ Wisconsin, Dept Med Phys, Biomed Engn, Med,Emergency Med, Madison, WI USA
[7] Michigan Med, Dept Radiol, Ann Arbor, MI USA
[8] NYU, Dept Radiol, New York, NY 10003 USA
[9] Cincinnati Childrens Hosp, Med Ctr, Cincinnati, OH USA
[10] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH USA
[11] Univ Cincinnati, Dept Comp Sci, Biomed Engn, Biomed Informat, Cincinnati, OH 45267 USA
基金
美国国家卫生研究院;
关键词
Liver stiffness; Deep learning; Magnetic resonance imaging; Magnetic resonance elastography; Chronic liver disease; MAGNETIC-RESONANCE ELASTOGRAPHY; SHEAR-WAVE SPEED; VIRTUAL ELASTOGRAPHY; DIFFUSION; CHILDREN;
D O I
10.1007/s00330-024-11312-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis. Purpose To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients. Materials and methods We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (>= 2.5 kPa, >= 3.0 kPa, >= 3.5 kPa, >= 4 kPa, or >= 5 kPa), reflecting various degrees of liver stiffening. Results We identified 4695 MRI examinations from 4295 patients (mean +/- SD age, 47.6 +/- 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (>= 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available (https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git). Conclusion Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] Burden of liver diseases in the world
    Asrani, Sumeet K.
    Devarbhavi, Harshad
    Eaton, John
    Kamath, Patrick S.
    [J]. JOURNAL OF HEPATOLOGY, 2019, 70 (01) : 151 - 171
  • [2] Liver diseases in developing countries
    Cainelli, Francesca
    [J]. WORLD JOURNAL OF HEPATOLOGY, 2012, 4 (03) : 66 - 67
  • [3] US-based Sequential Algorithm Integrating an AI Model for Advanced Liver Fibrosis Screening
    Chen, Li -Da
    Huang, Ze-Rong
    Yang, Hong
    Cheng, Mei-Qing
    Hu, Hang-Tong
    Lu, Xiao-Zhou
    Li, Ming-De
    Lu, Rui-Fang
    He, Dan-Ni
    Lin, Peng
    Ma, Qiu-Ping
    Huang, Hui
    Ruan, Si-Min
    Ke, Wei-Ping
    Liao, Bing
    Zhong, Bi-Hui
    Ren, Jie
    Lu, Ming-De
    Xie, Xiao-Yan
    Wang, Wei
    [J]. RADIOLOGY, 2024, 311 (01)
  • [4] Deep learning for predicting fibrotic progression risk in diabetic individuals with metabolic dysfunction-associated steatotic liver disease initially free of hepatic fibrosis
    Dai, Ruihong
    Sun, Miaomiao
    Lu, Mei
    Deng, Lanhua
    [J]. HELIYON, 2024, 10 (13)
  • [5] Ultrasound-based liver elastography: current results and future perspectives
    Fang, Cheng
    Sidhu, Paul S.
    [J]. ABDOMINAL RADIOLOGY, 2020, 45 (11) : 3463 - 3472
  • [6] Temporal stability assessment in shear wave elasticity images validated by deep learning neural network for chronic liver disease fibrosis stage assessment
    Gatos, Ilias
    Tsantis, Stavros
    Spiliopoulos, Stavros
    Karnabatidis, Dimitris
    Theotokas, Ioannis
    Zoumpoulis, Pavlos
    Loupas, Thanasis
    Hazle, John D.
    Kagadis, George C.
    [J]. MEDICAL PHYSICS, 2019, 46 (05) : 2298 - 2309
  • [7] Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature
    Ginsberg, G
    Hattis, D
    Sonawane, B
    Russ, A
    Banati, P
    Kozlak, M
    Smolenski, S
    Goble, R
    [J]. TOXICOLOGICAL SCIENCES, 2002, 66 (02) : 185 - 200
  • [8] Liver Fibrosis, Fat, and Iron Evaluation with MRI and Fibrosis and Fat Evaluation with US: A Practical Guide for Radiologists
    Guglielmo, Flavius F.
    Barr, Richard G.
    Yokoo, Takeshi
    Ferraioli, Giovanna
    Lee, James T.
    Dillman, Jonathan R.
    Horowitz, Jeanne M.
    Jhaveri, Kartik S.
    Miller, Frank H.
    Modi, Roshan Y.
    Mojtahed, Amirkasra
    Ohliger, Michael A.
    Pirasteh, Ali
    Reeder, Scott B.
    Shanbhogue, Krishna
    Silva, Alvin C.
    Smith, Elainea N.
    Surabhi, VenkateswarR.
    Taouli, Bachir
    Welle, Christopher L.
    Yeh, Benjamin M.
    Venkatesh, SudhakarK.
    [J]. RADIOGRAPHICS, 2023, 43 (06)
  • [9] Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data
    He, Lili
    Li, Hailong
    Dudley, Jonathan A.
    Maloney, Thomas C.
    Brady, Samuel L.
    Somasundaram, Elanchezhian
    Trout, Andrew T.
    Dillman, Jonathan R.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) : 592 - 601
  • [10] Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI
    Hectors, Stefanie J.
    Kennedy, Paul
    Huang, Kuang-Han
    Stocker, Daniel
    Carbonell, Guillermo
    Greenspan, Hayit
    Friedman, Scott
    Taouli, Bachir
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (06) : 3805 - 3814