On the blow-up profile of Keller-Segel-Patlak system

被引:0
作者
Bai, Xueli [1 ,2 ]
Zhou, Maolin [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Inst, 45 Gaoxin South 9th Rd, Shenzhen 518063, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
TIME AGGREGATION; DIFFUSION; ASYMPTOTICS; ATTRACTION; STABILITY; MODELS;
D O I
10.1007/s00208-025-03102-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the sharp estimate on the asymptotic behaviors of blow-up profiles for Keller-Segel-Patlak system in the space with dimensions N >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}: 0.1ut=Delta u-del<middle dot>(u del v),x is an element of RN,t is an element of(0,T),0=Delta v+u,x is an element of RN,t is an element of(0,T),u(x,0)=u0(x),x is an element of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u\nabla v), & x\in \mathbb {R}<^>N, \ t\in (0,T), \\ 0 = \Delta v+u, & x\in \mathbb {R}<^>N, \ t\in (0,T), \\ u(x,0)=u_0(x), & x\in \mathbb {R}<^>N, \end{array} \right. \end{aligned}$$\end{document}which solves an open problem proposed by Souplet and Winkler in [41]. To establish this result, we develop the zero number argument for nonlinear equations with unbounded coefficients and construct a family of auxiliary backward self-similar solutions through nontrivial ODE analysis.
引用
收藏
页码:313 / 337
页数:25
相关论文
共 47 条
[1]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[2]   Keller-Segel Chemotaxis Models: A Review [J].
Arumugam, Gurusamy ;
Tyagi, Jagmohan .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[3]   Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision [J].
Bellomo, N. ;
Outada, N. ;
Soler, J. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (04) :713-792
[4]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[5]  
Blanchet A., 1993, J. Funct. Anal, V103, P146
[6]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[7]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[8]   Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Calvez, Vincent ;
Carrillo, Jose A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :691-721
[9]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[10]   Collapsing-ring blowup solutions for the Keller-Segel system in three dimensions and higher [J].
Collot, Charles ;
Ghoul, Tej-Eddine ;
Masmoudi, Nader ;
Nguyen, Van Tien .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (07)