Universal buried interface modification with lead iodide for efficient and stable perovskite solar cells

被引:1
作者
Nguyen, Dang-Thuan [1 ]
Bui, Anh Dinh [1 ]
Walter, Daniel [1 ]
Nguyen, Khoa [1 ]
Zhan, Hualin [1 ]
Ta, Xuan Minh Chau [2 ,3 ]
Tabi, Grace Dansoa [1 ]
Tran-Phu, Thanh [2 ]
Chang, Li-Chun [1 ]
Huang, Keqing [1 ]
Truong, Minh Anh [4 ]
Wakamiya, Atsushi [4 ]
Adhikari, Sunita Gautam [5 ]
Nguyen, Hieu [1 ]
Haggren, Anne [1 ]
Ahmad, Viqar [1 ]
Duong, Thanh-Tung [6 ]
Cuong, Nguyen Duy [6 ]
Shen, Heping [1 ]
Catchpole, Kylie [1 ]
Weber, Klaus [1 ]
White, Thomas [1 ]
Duong, The [1 ]
机构
[1] Australian Natl Univ, Sch Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Chem, Canberra, ACT 2601, Australia
[3] Univ Sydney, Fac Engn, Sydney, NSW 2006, Australia
[4] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[5] Flinders Univ S Australia, Inst Nanoscale Sci & Technol, Adelaide, SA 5042, Australia
[6] Hanoi Univ Sci & Technol, Sch Mat Sci & Engn, 1 Dai Co Viet St, Hanoi, Vietnam
基金
澳大利亚研究理事会;
关键词
EXCESS PBI2; PASSIVATION; PERFORMANCE; TRANSPORT; STABILITY; TIME;
D O I
10.1039/d5ta01282a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A controlled amount of excess lead iodide (PbI2) in the perovskite precursor has been widely used in perovskite solar cells (PSCs) to enhance the device's performance by passivating defects. However, an excessive amount of PbI2 can lead to significant hysteresis and reduced stability. Managing the excess PbI2 in the perovskite bulk and on the top (exposed) surface is achievable, but the bottom surface presents a challenge. This study offers a method for adjusting the amount of excess PbI2 in perovskite solar cells at both the bottom surface and the bulk of the perovskite layer. This treatment, known as buried interface modification, is effective for both negative-intrinsic-positive (n-i-p) and positive-intrinsic-negative (p-i-n) structures, achieving efficiencies of 25.9% and 24.6%, respectively, with negligible hysteresis and excellent stability of over 1000 hours under light at the maximum power point.
引用
收藏
页码:14055 / 14063
页数:9
相关论文
共 64 条
[1]   Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells [J].
Bai, Yang ;
Meng, Xiangyue ;
Yang, Shihe .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[2]   Optical properties and limiting photocurrent of thin-film perovskite solar cells [J].
Ball, James M. ;
Stranks, Samuel D. ;
Hoerantner, Maximilian T. ;
Huettner, Sven ;
Zhang, Wei ;
Crossland, Edward J. W. ;
Ramirez, Ivan ;
Riede, Moritz ;
Johnston, Michael B. ;
Friend, Richard H. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) :602-609
[3]   Efficient luminescent solar cells based on tailored mixed-cation perovskites [J].
Bi, Dongqin ;
Tress, Wolfgang ;
Dar, M. Ibrahim ;
Gao, Peng ;
Luo, Jingshan ;
Renevier, Clementine ;
Schenk, Kurt ;
Abate, Antonio ;
Giordano, Fabrizio ;
Baena, Juan-Pablo Correa ;
Decoppet, Jean-David ;
Zakeeruddin, Shaik Mohammed ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Hagfeldt, Anders .
SCIENCE ADVANCES, 2016, 2 (01)
[4]   Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability [J].
Bi, Huan ;
Liu, Baibai ;
He, Dongmei ;
Bai, Le ;
Wang, Wenqi ;
Zang, Zhigang ;
Chen, Jiangzhao .
CHEMICAL ENGINEERING JOURNAL, 2021, 418
[5]   23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability [J].
Bush, Kevin A. ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Boccard, Mathieu ;
Cheacharoen, Rongrong ;
Mailoa, Jonathan P. ;
McMeekin, David P. ;
Hoye, Robert L. Z. ;
Bailie, Colin D. ;
Leijtens, Tomas ;
Peters, Ian Marius ;
Minichetti, Maxmillian C. ;
Rolston, Nicholas ;
Prasanna, Rohit ;
Sofia, Sarah ;
Harwood, Duncan ;
Ma, Wen ;
Moghadam, Farhad ;
Snaith, Henry J. ;
Buonassisi, Tonio ;
Holman, Zachary C. ;
Bent, Stacey F. ;
McGehee, Michael D. .
NATURE ENERGY, 2017, 2 (04)
[6]   Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells [J].
Byranvand, Mahdi Malekshahi ;
Saliba, Michael .
SOLAR RRL, 2021, 5 (08)
[7]   Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers [J].
Calloni, A. ;
Abate, A. ;
Bussetti, G. ;
Berti, G. ;
Yivlialin, R. ;
Ciccacci, F. ;
Duo, L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (37) :21329-21335
[8]   Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Malliakas, Christos D. ;
Katz, Michael J. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
APL MATERIALS, 2014, 2 (09)
[9]   Defects Passivation Strategy for Efficient and Stable Perovskite Solar Cells [J].
Cao, Yunxuan ;
Gao, Fangliang ;
Xiang, Ling ;
Li, Hanfang ;
Li, Dongyang ;
Liu, Qing ;
Liu, Hongliang ;
Zou, Can ;
Li, Shuti .
ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
[10]   Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells [J].
Chao, Lingfeng ;
Niu, Tingting ;
Gao, Weiyin ;
Ran, Chenxin ;
Song, Lin ;
Chen, Yonghua ;
Huang, Wei .
ADVANCED MATERIALS, 2021, 33 (14)