ADAAUG: An Adaptive Data Augmentation Method for Change Detection

被引:1
作者
Huang, Rui [1 ]
Wei, Jieda [1 ]
Gao, Sihua [1 ]
Guo, Zongyu [1 ]
Xing, Yan [1 ]
Xu, Weifeng [2 ]
Guo, Qing [3 ]
机构
[1] Civil Aviat Univ China, Tianjin, Peoples R China
[2] North China Elect Power Univ, Beijing, Peoples R China
[3] Agcy Sci Technol & Res, Singapore, Singapore
来源
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024 | 2024年
关键词
Change detection; data augmentation; reinforcement learning;
D O I
10.1109/CAI59869.2024.00026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current data augmentation methods for change detection utilize fixed strategies to produce image samples without considering the specificity of the change image pairs. In this paper, we propose ADAAUG, a new reinforcement learning framework that adaptively augments the change image pairs. An actor selects the best augmentation operation from the operation set according to the image pair. The augmented image pairs make the change detector easier to learn the optimal parameters and improve the final detection performance. Besides, we propose a mask guided mixing customed for change detection data augmentation, which mixes the change regions of the current training sample based on the prediction results and labels to generate high-quality samples with more positive samples. The extensive experiments on the standard benchmarks show that ADAAUG achieves favorable performance compared to SOTA data augmentation methods.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 21 条
[1]   Remote Sensing Image Change Detection With Transformers [J].
Chen, Hao ;
Qi, Zipeng ;
Shi, Zhenwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[2]   A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection [J].
Chen, Hao ;
Shi, Zhenwei .
REMOTE SENSING, 2020, 12 (10)
[3]  
Chen PG, 2024, Arxiv, DOI arXiv:2001.04086
[4]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[5]   SuperMix: Supervising the Mixing Data Augmentation [J].
Dabouei, Ali ;
Soleymani, Sobhan ;
Taherkhani, Fariborz ;
Nasrabadi, Nasser M. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13789-13798
[6]   Change Detection on Remote Sensing Images Using Dual-Branch Multilevel Intertemporal Network [J].
Feng, Yuchao ;
Jiang, Jiawei ;
Xu, Honghui ;
Zheng, Jianwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[7]   KeepAugment: A Simple Information-Preserving Data Augmentation Approach [J].
Gong, Chengyue ;
Wang, Dilin ;
Li, Meng ;
Chandra, Vikas ;
Liu, Qiang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1055-1064
[8]  
Hendrycks D., 2020, INT C LEARN REPR, V1, P5
[9]  
Huang R, 2023, AAAI CONF ARTIF INTE, P7919
[10]   Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set [J].
Ji, Shunping ;
Wei, Shiqing ;
Lu, Meng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01) :574-586