A Comparative Analysis of Different Algorithms for Estimating Evapotranspiration with Limited Observation Variables: A Case Study in Beijing, China

被引:0
作者
Sun, Di [1 ]
Zhang, Hang [2 ]
Qi, Yanbing [2 ,3 ]
Ren, Yanmin [4 ]
Zhang, Zhengxian [5 ]
Li, Xuemin [2 ]
Lv, Yuping [6 ]
Cheng, Minghan [7 ,8 ]
机构
[1] Beijing Water Author, Beijing 101117, Peoples R China
[2] Beijing Water Sci & Technol Inst, Beijing 100048, Peoples R China
[3] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
[4] Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
[5] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Jiangsu Prov Key Lab Soil Eros & Ecol Restorat, Nanjing 210037, Peoples R China
[6] Yangzhou Univ, Coll Hydraul Sci & Engn, Yangzhou 225009, Peoples R China
[7] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain Cr, Yangzhou 225009, Peoples R China
[8] Yangzhou Univ, Agr Coll, Jiangsu Key Lab Crop Genet & Physiol, Jiangsu Key Lab Crop Cultivat & Physiol, Yangzhou 225009, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
evapotranspiration; LST-VI space; long-time-series; machine learning; spatial distribution; ENERGY-BALANCE; SOIL-MOISTURE; SURFACE-ENERGY; TERRESTRIAL EVAPOTRANSPIRATION; SEBAL MODEL; MACHINE; MODIS; FLUXES; VALIDATION; NDVI;
D O I
10.3390/rs17040636
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evapotranspiration (ET) plays a crucial role in the surface water cycle and energy balance, and accurate ET estimation is essential for study in various domains, including agricultural irrigation, drought monitoring, and water resource management. Remote sensing (RS) technology presents an efficient approach for estimating ET at regional scales; however, existing RS retrieval algorithms for ET are intricate and necessitate a multitude of parameters. The land surface temperature-vegetation index (LST-VI) space method and statistical regression by machine learning (ML) offer the benefits of simplicity and straightforward implementation. This study endeavors to identify the optimal long-term sequence LST-VI space method and ML for ET estimation under conditions of limited observed variables, (LST, VI, and near-surface air temperature). A comparative analysis of their performance is undertaken using ground-based flux observations and MOD16 ET data. The findings can be summarized as follows: (1) Long-term remote sensing data can furnish a more comprehensive background field for the LST-VI space, achieving superior fitting accuracy for wet and dry edges, thereby enabling precise ET estimation with the following metrics: correlation coefficient (r) = 0.68, root mean square error (RMSE) = 0.76 mm/d, mean absolute error (MAE) = 0.49 mm/d, and mean bias error (MBE) = -0.14 mm. (2) ML generally produces more accurate ET estimates, with the Random Forest Regressor (RFR) demonstrating the highest accuracy: r = 0.79, RMSE = 0.61 mm/d, MAE = 0.42 mm/d, and MBE = -0.02 mm. (3) Both ET estimates derived from the LST-VI space and ML exhibit spatial distribution characteristics comparable to those of MOD16 ET data, further attesting to the efficacy of these two algorithms. Nevertheless, when compared to MOD16 data, both approaches exhibit varying degrees of underestimation. The results of this study can contribute to water resource management and offer a fresh perspective on remote sensing estimation methods for ET.
引用
收藏
页数:28
相关论文
共 87 条
  • [1] Zhang K., Chen H., Ma N., Shang S., Wang Y., Xu Q., Zhu G., A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020, Sci. Data, 11, (2024)
  • [2] Zhang K., Zhu G., Ma J., Yang Y., Shang S., Gu C., Parameter Analysis and Estimates for the MODIS Evapotranspiration Algorithm and Multiscale Verification, Water Resour. Res, 55, pp. 2211-2231, (2019)
  • [3] Amani S., Shafizadeh-Moghadam H., A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data, Agric. Water Manag, 284, (2023)
  • [4] Jaafar H.H., Sujud L.H., High-resolution satellite imagery reveals a recent accelerating rate of increase in land evapotranspiration, Remote Sens. Environ, 315, (2024)
  • [5] Li J., Li Y., Yin L., Zhao Q., A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain, Agric. Water Manag, 291, (2024)
  • [6] Callejas-Rodelas J.A., Knohl A., van Ramshorst J., Mammarella I., Markwitz C., Comparison between lower-cost and conventional eddy covariance setups for CO<sub>2</sub> and evapotranspiration measurements above monocropping and agroforestry systems, Agric. For. Meteorol, 354, (2024)
  • [7] Cheng M., Jiao X., Jin X., Li B., Liu K., Shi L., Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors, Agric. Water Manag, 255, (2021)
  • [8] Tran B.N., Van Der Kwast J., Seyoum S., Uijlenhoet R., Jewitt G., Mul M., Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: A systematic review of methods and gaps, Hydrol. Earth Syst. Sci, 27, pp. 4505-4528, (2023)
  • [9] Jaafar H.H., Ahmad F.A., Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon, Remote Sens. Environ, 238, (2020)
  • [10] Anderson M.C., Kustas W.P., Norman J.M., Diak G.T., Hain C.R., Gao F., Yang Y., Knipper K.R., Xue J., Yang Y., A brief history of the thermal IR-based Two-Source Energy Balance (TSEB) model–diagnosing evapotranspiration from plant to global scales, Agric. For. Meteorol, 350, (2024)