Plasmonic slot waveguides: a quantum leap in nonlinear nanophotonics

被引:0
|
作者
Yanez, Libertad Rojas [1 ]
Hu, Huatian [2 ]
Ciraci, Cristian [2 ]
Palomba, Stefano [1 ]
机构
[1] Univ Sydney, Inst Photon & Opt Sci, Sch Phys, Sydney, NSW, Australia
[2] Ist Italiano Tecnol, Ctr Biomol Nanotechnol, Lecce, Italy
来源
关键词
metal-dielectric-metal slot waveguide; nonlinear plasmonics; epsilon-near-zero materials; nanophotonics; four-wave mixing; LARGE OPTICAL NONLINEARITY; COMPUTATIONAL ADVANTAGE; SILICON; OXIDE; GENERATION;
D O I
10.3389/fnano.2025.1536462
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interest and excitement in nanophotonics-the study and control of light-matter interactions at the nanoscale-are driven by the ability to confine light to volumes well below a cubic wavelength, and, thereby, achieve extremely high intensities. This leads to light-matter interactions of unprecedented localization and strength. Such extreme behavior-both in terms of field enhancement and localization-can be achieved using plasmonic nanostructures, which concentrate light in regions much smaller than the wavelength of light, reducing the excitation power and, under certain conditions, removing phase-matching requirements in the nonlinear regime. In this study, we theoretically show that metal-dielectric-metal (MDM) slot waveguides (WGs), consisting of a thin dielectric layer sandwiched between metal films, provide the strongest confinement. We also demonstrate that integrating epsilon-near-zero (ENZ) materials within the MDM slot significantly improves the nonlinear conversion efficiency of these structures. The results show that the degenerate four-wave mixing conversion efficiency of these ENZ-MDM structures surpasses that of regular plasmonic structures and their dielectric counterparts, even under low pump power conditions, and remains robust despite higher losses in the ENZ material.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Properties of three-dimensional plasmonic slot waveguides
    Veronis, Georgios
    Fan, Shanhui
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES VI, 2008, 7032
  • [22] Guided modes of nonlinear slot waveguides
    Fujisawa, T.
    Koshiba, M.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (13-16) : 1530 - 1532
  • [23] Characteristic Impedance Model for Plasmonic Metal Slot Waveguides
    Ly-Gagnon, Dany-Sebastien
    Kocabas, Sukru Ekin
    Miller, David A. B.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (06) : 1473 - 1478
  • [24] Compact couplers between dielectric and plasmonic slot waveguides
    Veronis, Georgios
    Fan, Shanhui
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XI, 2007, 6475
  • [25] Spatial Nonlinearity in Anisotropic Metamaterial Plasmonic Slot Waveguides
    Elsawy, Mahmoud M. R.
    Renversez, Gilles
    PLASMONICS, 2018, 13 (03) : 971 - 979
  • [26] Magneto-optical effects in plasmonic slot waveguides
    Kuz'michev, A. N.
    Ignatyeva, D. O.
    Kalish, A. N.
    Belotelov, V. I.
    9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015), 2015, : 160 - 162
  • [27] Spatial Nonlinearity in Anisotropic Metamaterial Plasmonic Slot Waveguides
    Mahmoud M. R. Elsawy
    Gilles Renversez
    Plasmonics, 2018, 13 : 971 - 979
  • [28] Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy
    Wong, Herman M. K.
    Dezfouli, Mohsen Kamandar
    Sun, Lu
    Hughes, Stephen
    Helmy, Amr S.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [29] Driving plasmonic nanoantennas with triangular lasers and slot waveguides
    Hattori, Haroldo T.
    Li, Ziyuan
    Liu, Danyu
    APPLIED OPTICS, 2011, 50 (16) : 2391 - 2400
  • [30] Plasmonic Modes of Metamaterial-Based Slot Waveguides
    Rukhlenko, Ivan D.
    Premaratne, Malin
    Agrawal, Govind P.
    ADVANCES IN OPTOELECTRONICS, 2012, 2012 (2012)