共 105 条
- [1] Abanades Lazaro I., Wells C.J., Forgan R.S., Multivariate modulation of the Zr MOF UiO‐66 for defect‐controlled combination anticancer drug delivery, Angew. Chem., 132, 13, pp. 5249-5255, (2020)
- [2] Abd A.A., Et al., Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: experimental and dynamic modelling assessment, Chem. Eng. J., 453, (2023)
- [3] Al-Ghouti M.A., Da'ana D.A., Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard Mater., 393, (2020)
- [4] Al-Wabel M., Et al., Performance of dry water-and porous carbon-based sorbents for carbon dioxide capture, Environ. Res., 174, pp. 69-79, (2019)
- [5] An H., Et al., Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74, Chem. Eng. J., 469, (2023)
- [6] Anas M., Et al., Synthesis, characterization and activation energy of nano-(GO)x/(Cu,Tl)-1234 superconducting composites, J. Low Temp. Phys., 206, pp. 1-22, (2022)
- [7] Asgharnejad L., Abbasi A., Shakeri A., Ni-based metal-organic framework/GO nanocomposites as selective adsorbent for CO2 over N2, Microporous Mesoporous Mater., 262, pp. 227-234, (2018)
- [8] Ashourzadeh Pordsari M., Moradi M., Ghaemi A., Fabrication of a cost-effective metal oxide-based adsorbent from industrial waste slag for efficient CO2 separation under flue gas conditions, J. CO2 Util., 88, (2024)
- [9] Bui M., Et al., Carbon capture and storage (CCS): the way forward, Energy Environ. Sci., 11, 5, pp. 1062-1176, (2018)
- [10] Cao Y., Et al., Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites, J. Ind. Eng. Chem., 27, pp. 102-107, (2015)