Finely quasiconformal mappings

被引:0
作者
Lahti, Panu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
finely open set; quasiconformal mapping; Sobolev mapping; capacity; fine differentiability; HOMEOMORPHISMS; DILATATION; CONTINUITY;
D O I
10.1017/prm.2024.135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a relaxed version of the metric definition of quasiconformality that is natural also for mappings of low regularity, including W-loc(1,1) (R-n; R-n )-mappings. Then we show on the plane that this relaxed definition can be used to prove Sobolev regularity, and that these 'finely quasiconformal' mappings are in fact quasiconformal.
引用
收藏
页数:25
相关论文
共 22 条
[1]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[2]  
[Anonymous], 2015, New Mathematical Monographs
[3]  
[Anonymous], 1962, Transactions of the American Mathematical Society
[4]  
Balogh ZM, 2000, DUKE MATH J, V101, P555
[5]   Absolute continuity of quasiconformal mappings on curves [J].
Balogh, Zoltan M. ;
Koskela, Pekka ;
Rogovin, Sari .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) :645-664
[6]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[7]  
CARRIERO M, 1988, J MATH PURE APPL, V67, P359
[8]  
Evans L.C., 2015, Textbooks in Mathematics, P299
[9]  
Fang AN, 1998, ACTA MATH SIN, V14, P473
[10]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277