3D auxetic metamaterials with tunable multistable mechanical properties

被引:0
|
作者
Zhang, Bojian [1 ]
Meng, Zhiqiang [1 ]
Wang, Yifan [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
Mechanical metamaterials; 3D bistable structure; Auxetic property; Triaxial isotropy; Tunable mechanical properties; ENERGY-ABSORPTION; LARGE-DEFORMATION; HONEYCOMBS; STIFFNESS; DESIGN;
D O I
10.1016/j.mechmat.2024.105217
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multistable mechanical metamaterials have been extensively studied for their unique mechanical behaviors, including snap-through capability, variable stiffness, and recoverable cushioning properties. Similarly, auxetic metamaterials, known for their ability to uniformly distribute stress, absorb energy efficiently, and withstand complex loading conditions, offer significant potential for the development of safer, more durable, and efficient materials. Despite significant progress in the field, a key challenge remains unaddressed: the effective integration of both multistability and auxetic properties in 3-dimensional (3D) mechanical metamaterials. This integration has not been fully explored, particularly regarding the realization of programmable, directionally tunable behaviors that combine the advantages of a negative Poisson's ratio and multiple stable states. Here, we introduce a 3D mechanical metamaterial composed of isotropic bistable auxetic blocks (BABs) fabricated using bi-material 3D printing technology. Mechanical models are developed to assess the influence of geometrical parameters on the mechanical responses of BAB, which are validated through both numerical simulation and experimental results. By assembling these proposed BABs, we demonstrate that 3D mechanical metamaterials with multistable auxetic behavior can be designed and fabricated. Our results show that these metamaterials exhibit sequential deformation under applied loading and possess programmable mechanical properties. These findings open new avenues for the design and development of 3D multistable auxetic metamaterials with programmable mechanical behaviors, offering promising applications in areas such as energy absorption, deployable structures, soft robotics, and more.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] 3D printed auxetic metamaterials with tunable mechanical properties and morphological fitting abilities
    Yuan, Yazhou
    Ma, Suqian
    Sun, Xianyan
    Chen, Boya
    Luo, Yuchao
    Lin, Zhaohua
    Liang, Yunhong
    MATERIALS & DESIGN, 2024, 244
  • [2] Energy dissipation in multistable auxetic mechanical metamaterials
    Ma, Hongye
    Wang, Ke
    Zhao, Haifeng
    Hong, Yilun
    Zhou, Yanlin
    Xue, Jing
    Li, Qiushi
    Wang, Gong
    Yan, Bo
    COMPOSITE STRUCTURES, 2023, 304
  • [3] Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties
    Ren, Xin
    Shen, Jianhu
    Ghaedizadeh, Arash
    Tian, Hongqi
    Xie, Yi Min
    SMART MATERIALS AND STRUCTURES, 2015, 24 (09)
  • [4] 3D Printing of Auxetic Metamaterials with High-Temperature and Programmable Mechanical Properties
    Ren, Lei
    Wu, Wenzheng
    Ren, Luquan
    Song, Zhengyi
    Liu, Qingping
    Li, Bingqian
    Wu, Qian
    Zhou, Xueli
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [5] A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties
    Zheng, Xiaoyang
    Guo, Xiaofeng
    Watanabe, Ikumu
    MATERIALS & DESIGN, 2021, 198
  • [6] 4D Printing Auxetic Metamaterials with Tunable, Programmable, and Reconfigurable Mechanical Properties
    Xin, Xiaozhou
    Liu, Liwu
    Liu, Yanju
    Leng, Jinsong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
  • [7] Dynamic characterization of 3D printed mechanical metamaterials with tunable elastic properties
    Zadeh, Mohammad Naghavi
    Alijani, Farbod
    Chen, Xianfeng
    Dayyani, Iman
    Yasaee, Mehdi
    Mirzaali, Mohammad J.
    Zadpoor, Amir A.
    APPLIED PHYSICS LETTERS, 2021, 118 (21)
  • [8] 3D Printed Fractal Metamaterials with Tunable Mechanical Properties and Shape Reconfiguration
    Wang, Dong
    Dong, Le
    Gu, Guoying
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (01)
  • [9] 3D gradient auxetic soft mechanical metamaterials fabricated by additive manufacturing
    Hedayati, Reza
    Gueven, Aysun
    van der Zwaag, Sybrand
    APPLIED PHYSICS LETTERS, 2021, 118 (14)
  • [10] Tunable wave dispersion in 3D woodpile mechanical metamaterials
    Kim, Eunho
    Kim, Yong Han Noel
    Yang, Jinkyu
    PROCEEDINGS OF 2014 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES (ISOT), 2014, : 4 - 6