共 23 条
- [11] Breiman L., Random forests, Machine learning, 45, 1, pp. 5-32, (2001)
- [12] Calhoun P., Su X.G., Nunn M., Fan J.J., Constructing Multivariate Survival Trees: The MST Package for R, J Stat Softw, 83, 12, pp. 1-21, (2018)
- [13] Leblanc M., Crowley J., Survival Trees by Goodness of Split, J Am Stat Assoc, 88, 422, pp. 457-467, (1993)
- [14] Uno H., Cai T., Pencina M.J., D'Agostino R.B., Wei L.J., On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data, Statistics in medicine, 30, 10, pp. 1105-1117, (2011)
- [15] Uno H., Tian L., Cai T., Kohane I.S., Wei L.J., A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data, Statistics in medicine, 32, 14, pp. 2430-2442, (2013)
- [16] Tangri N., Stevens L.A., Griffith J., Et al., A predictive model for progression of chronic kidney disease to kidney failure, JAMA: the journal of the American Medical Association, 305, 15, pp. 1553-1559, (2011)
- [17] Winnicki E., McCulloch C.E., Mitsnefes M.M., Furth S.L., Warady B.A., Ku E., Use of the Kidney Failure Risk Equation to Determine the Risk of Progression to End-stage Renal Disease in Children With Chronic Kidney Disease, JAMA pediatrics, 172, 2, pp. 174-180, (2018)
- [18] Austin P.C., Steyerberg E.W., The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models, Statistics in medicine, 38, 21, pp. 4051-4065, (2019)
- [19] Van Calster B., Nieboer D., Vergouwe Y., De Cock B., Pencina M.J., Steyerberg E.W., A calibration hierarchy for risk models was defined: from utopia to empirical data, Journal of clinical epidemiology, 74, pp. 167-176, (2016)
- [20] Avner E.D., Harmon W.E., Niaudet P., Yoshikawa N., Pediatric nephrology, (2009)