SFINet: A semantic feature interactive learning network for full-time infrared and visible image fusion

被引:0
|
作者
Song, Wenhao [1 ]
Li, Qilei [1 ,2 ]
Gao, Mingliang [1 ]
Chehri, Abdellah [3 ]
Jeon, Gwanggil [4 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[3] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, Canada
[4] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
关键词
Image fusion; Deep learning; Semantic information; Attention mechanism; HYBRID MULTISCALE DECOMPOSITION; NEST;
D O I
10.1016/j.eswa.2024.125472
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Infrared and visible image fusion aims to combine data from various source images to generate a high-quality image. Nevertheless, numerous fusion methods often prioritize visual quality above semantic information. To address this problem, we present a Semantic Feature Interactive Learning Network (SFINet) for full-time infrared and visible images. The SFINet encompasses an image fusion network and an image segmentation network through a Semantic Feature Interaction (SFI) module. The image fusion network employs Multi-scale Feature Extraction (MFE) modules to capture global and local information at multiple scales. Meanwhile, it performs an adaptive fusion of complementary information using a Dual Attention Feature Fusion (DAFF) module. The image segmentation network guides the image fusion network using the SFI module for semantic feature interaction. Comparative results prove that the proposed method is superior to state-of-the-art (SOTA) models in image fusion and semantic segmentation tasks. The code is available at https://github.com/ songwenhao123/SFINet.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interactive Feature Embedding for Infrared and Visible Image Fusion
    Zhao, Fan
    Zhao, Wenda
    Lu, Huchuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12810 - 12822
  • [2] Multiscale feature learning and attention mechanism for infrared and visible image fusion
    Gao, Li
    Luo, Delin
    Wang, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (02) : 408 - 422
  • [3] AITFuse: Infrared and visible image fusion via adaptive interactive transformer learning
    Wang, Zhishe
    Yang, Fan
    Sun, Jing
    Xu, Jiawei
    Yang, Fengbao
    Yan, Xiaomei
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [4] RITFusion: Reinforced Interactive Transformer Network for Infrared and Visible Image Fusion
    Li, Xiaoling
    Li, Yanfeng
    Chen, Houjin
    Peng, Yahui
    Chen, Luyifu
    Wang, Minjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [5] RITFusion: Reinforced Interactive Transformer Network for Infrared and Visible Image Fusion
    Li, Xiaoling
    Li, Yanfeng
    Chen, Houjin
    Peng, Yahui
    Chen, Luyifu
    Wang, Minjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [6] GLFuse: A Global and Local Four-Branch Feature Extraction Network for Infrared and Visible Image Fusion
    Zhao, Genping
    Hu, Zhuyong
    Feng, Silu
    Wang, Zhuowei
    Wu, Heng
    REMOTE SENSING, 2024, 16 (17)
  • [7] BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image
    Wang, Xuejie
    Zhang, Jianxun
    Tao, Ye
    Yuan, Xiaoli
    Guo, Yifan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4621 - 4639
  • [8] An Information Retention and Feature Transmission Network for Infrared and Visible Image Fusion
    Liu, Chang
    Yang, Bin
    Li, Yuehua
    Zhang, Xiaozhi
    Pang, Lihui
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14950 - 14959
  • [9] THFuse: An infrared and visible image fusion network using transformer and hybrid feature extractor
    Chen, Jun
    Ding, Jianfeng
    Yu, Yang
    Gong, Wenping
    NEUROCOMPUTING, 2023, 527 : 71 - 82
  • [10] Denoiser Learning for Infrared and Visible Image Fusion
    Liu, Jinyang
    Li, Shutao
    Tan, Lishan
    Dian, Renwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,