SFINet: A semantic feature interactive learning network for full-time infrared and visible image fusion
被引:0
|
作者:
Song, Wenhao
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R ChinaShandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Song, Wenhao
[1
]
Li, Qilei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, EnglandShandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Li, Qilei
[1
,2
]
Gao, Mingliang
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R ChinaShandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Gao, Mingliang
[1
]
Chehri, Abdellah
论文数: 0引用数: 0
h-index: 0
机构:
Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, CanadaShandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Chehri, Abdellah
[3
]
Jeon, Gwanggil
论文数: 0引用数: 0
h-index: 0
机构:
Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South KoreaShandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
Jeon, Gwanggil
[4
]
机构:
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Shandong, Peoples R China
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[3] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, Canada
[4] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
Infrared and visible image fusion aims to combine data from various source images to generate a high-quality image. Nevertheless, numerous fusion methods often prioritize visual quality above semantic information. To address this problem, we present a Semantic Feature Interactive Learning Network (SFINet) for full-time infrared and visible images. The SFINet encompasses an image fusion network and an image segmentation network through a Semantic Feature Interaction (SFI) module. The image fusion network employs Multi-scale Feature Extraction (MFE) modules to capture global and local information at multiple scales. Meanwhile, it performs an adaptive fusion of complementary information using a Dual Attention Feature Fusion (DAFF) module. The image segmentation network guides the image fusion network using the SFI module for semantic feature interaction. Comparative results prove that the proposed method is superior to state-of-the-art (SOTA) models in image fusion and semantic segmentation tasks. The code is available at https://github.com/ songwenhao123/SFINet.
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
Chen, Jun
Ding, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
Ding, Jianfeng
Yu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
Chinese Acad Sci, Key Lab Infrared Syst Detecting & Imaging Technol, Shanghai 200083, Peoples R ChinaChina Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
Yu, Yang
Gong, Wenping
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China